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Abstract

What persists is what we observe, and what we observe is what has survived selection—persistence
under pressure is what fitness ultimately reduces to, and this tautology has more teeth than it first
appears. Equilibria in the classical sense are not observed in practice but only approached asymptot-
ically, which means that what we actually see is perpetual motion, adjustment, and friction, where
friction is the energy dissipated in the gap between current configurations and the equilibria they
cannot reach.

What this paper offers is a demonstration that four independent fields—physics, biology, eco-
nomics, and cultural evolution—have converged on the same mathematical machinery for describ-
ing these dynamics. The convergence is not metaphorical but structural: a rigorous isomorphism of
mathematical form, where the same fitness landscapes, selection operators, and transmission kernels
appear independently because they describe something real about how persistent systems behave.
We synthesize these convergent results into the Replicator-Optimization Mechanism (ROM): a uni-
fied apparatus for persistence-conditioned dynamics that can be instantiated at any scale.

The primary application is political philosophy, where we instantiate ROM with friction from
stake-voice mismatch as the primitive quantity, legitimacy as survival probability, and belief-transfer
as the mutation kernel modulator. What emerges is not so much a new formalism as a translation
manual—one showing that political philosophy’s debates about consent and legitimacy are at bottom
debates about friction and selection, and that the formal tools to make progress already exist in
adjacent fields.

The core algebraic results—simplex preservation, survival monotonicity, moving equilibrium
existence, and the impossibility of static equilibrium under varying friction—have been machine-
checked in Lean 4 with the Mathlib library (28 theorems, zero sorry placeholders; Appendix F).
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1 Introduction

1.1 The Thesis

Every persistent pattern optimizes for persistence, which sounds like a tautology until you notice how
much work it does: what we observe is what has survived, and what has survived is what was fit to
survive, and fitness when you strip away the domain-specific language reduces to persistence under
selection pressure, which means that the tautology has teeth after all.

The second thesis is perhaps less obvious but equally important: equilibria in the classical sense
do not exist in practice, or at least not as stable resting points that systems actually reach. Classical
economics assumes markets clear, classical game theory assumes players converge to Nash equilibrium,
classical political philosophy assumes legitimate states achieve stable consent, and yet none of these
equilibria are observed in the world—what we see instead is perpetual motion, friction, adjustment,
selection, and then more friction, with systems approaching equilibria asymptotically without ever ar-
riving.

The third thesis follows naturally from the first two: friction is the measurable signature of this dise-
quilibrium, the energy dissipated by systems that cannot reach equilibrium but keep trying anyway. This
dissipation manifests differently depending on the substrate—as heat in thermodynamics, as volatility in
markets, as protest and exit in politics, as coordination failure in multi-agent systems—but the underly-
ing dynamic is the same, which suggests that friction is not pathology but rather the universal signature
of systems optimizing under constraint.

What this paper argues is that four independent scientific fields have converged on the same for-
mal machinery for describing these dynamics, and this convergence is not analogy or metaphor but a
structural isomorphism—the same mathematical machinery appearing in different substrates because it

describes something real about how persistent systems actually behave.

1.2 The Convergence

Consider what each field has independently discovered:

Physics. Statistical mechanics describes systems that never reach equilibrium but fluctuate around
it, dissipating energy as friction (Kubo, 1966). The Mori-Zwanzig formalism (Mori, 1965; Zwanzig,
1961) shows how coarse-graining introduces memory effects—the influence of unobserved degrees of
freedom on observed dynamics. Effective field theory (Weinberg, 1979) treats the choice of “fundamen-
tal” units as scale-relative: what counts as atomic depends on your energy scale. The renormalization
group (Wilson, 1971; Kadanoff, 1966) provides the mathematical apparatus for relating descriptions at
different scales.

Biology. The replicator equation (Taylor and Jonker, 1978) describes how type frequencies change
under selection. The Price equation (Price, 1970) partitions evolutionary change into selection and
transmission components in a manner explicitly substrate-neutral. Multi-level selection theory (Okasha,
2006) shows that selection operates at multiple scales simultaneously, with the “level” of selection being
a parameter of analysis rather than a fact about the world. Porter and Wikman (2026) provide updated
formal conditions for evolutionary stability in economic contexts, extending the classical ESS concept
with refinements directly applicable to the persistence dynamics formalized here.

Economics. Institutional economics (North, 1990) describes how rules persist, evolve, and are se-

lected. Evolutionary game theory shows how strategies propagate through populations with variation



and differential survival (Weibull, 1995). Recent work on learning dynamics (Pangallo et al., 2019;
Galla and Farmer, 2013) shows that convergence to equilibrium is the exception, not the rule: most
learning processes oscillate or exhibit chaos. Shen et al. (2026) extend these dynamics to reputation-
based voluntary participation games, demonstrating how voluntary entry and exit—formally analogous
to the consent withdrawal mechanism in our framework—shapes the evolutionary stability landscape.

Cultural evolution. The cultural Price equation (El Mouden et al., 2014) applies selection-transmission
dynamics to ideas, norms, and institutions. Work on gene-culture coevolution (Boyd and Richerson,
1985; Cavalli-Sforza and Feldman, 1981; Henrich, 2016) demonstrates that cultural transmission ex-
hibits the same formal structure as genetic transmission, with different parameters.

The pattern: scale-relative parameterization, selection under differential fitness, transmission with
variation, and perpetual disequilibrium with friction as the measurable signature. Four fields. Same
mathematics. Different substrates. Recent work by Sornette et al. (2026) arrives at structural friction dy-
namics from statistical physics, identifying learned human interaction structures as endogenous sources
of alignment failure and AGI as an evolutionary shock to those structures—providing independent con-
vergence evidence for the scale-relative persistence framework developed here.

1.3 Why Political Philosophy Is Behind

Political philosophy has been asking a question that may not be the right one to ask, or at least not the
most productive one. For centuries the central question has been “What makes authority legitimate?”—a
question that assumes legitimacy is a property that arrangements possess or lack, something that can be
determined through philosophical analysis in the way that one determines whether an argument is valid
or a definition is coherent.

What the convergent evidence from other fields suggests is a different framing: legitimacy might
be better understood not as a property but as a survival probability, where arrangements generating low
friction persist and arrangements generating high friction are selected against, and what we call “legiti-
mate” is simply what we call configurations that have survived long enough to seem natural rather than
contingent. This reframing is not meant to be deflationary or to dissolve the normative questions that
political philosophers care about, but rather to ground them in dynamics that can actually be measured
and tested: arrangements with systematic stake-voice mismatch will generate friction, friction accumu-
lates until reconfiguration becomes unavoidable, and these dynamics turn out to be formally identical to
selection in biology and dissipation in physics.

If political philosophy has not adopted this framing, it is perhaps because it has not been translated
into the discipline’s vocabulary, and what this paper attempts to provide is something like a translation

manual.

1.4 The Contribution

To be clear about what is and is not being claimed here: we do not claim to have discovered persistence,
or selection, or friction, or scale-relativity, all of which are established results in their respective fields

with long literatures behind them. What we offer is synthetic rather than novel in that sense:

1. Demonstration of convergence. We show that four fields have arrived at what is essentially
the same formal structure through independent routes, and this convergence across disciplines
with different methods and different empirical bases is itself evidence that the structure captures

something real about how persistent systems behave.



2. Unified formalism. We synthesize these convergent results into what we call the Replicator-
Optimization Mechanism, or ROM: a single apparatus with explicit modeling choices about scale,
atomic unit, fitness function, and transmission kernel, which can then be instantiated in any do-

main where one wishes to study persistence-conditioned dynamics.

3. Political philosophy instantiation. We apply ROM to the traditional concerns of political philosophy—
consent and legitimacy—by mapping these concepts onto the established dynamics that other
fields have been characterizing for decades, where friction from stake-voice mismatch becomes
the primitive quantity, legitimacy becomes survival probability, and belief-transfer becomes a mu-

tation kernel modulator.

4. Grounding for the Axiom of Consent. This paper provides independent support for the frame-
work developed in Farzulla (2025a), which claims that friction is predictable from the kernel triple
(a,0,€). What this paper shows is why that claim should be believed: because it formalizes dy-
namics that physics, biology, and economics have independently confirmed through their own
methods.

The ROM formalism connects to a broader research programme investigating adversarial dynamics
across domains. The consent-friction instantiation developed here extends naturally to Al governance,
where Farzulla (2025d) argues that existentially vulnerable autonomous systems satisfying functional
criteria for political standing cannot be legitimately ruled without consent—a claim that gains formal
grounding once legitimacy is understood as survival probability under ROM dynamics. The framework
also applies to financial regulation, where Farzulla (2025b) demonstrates that hedging instruments ex-
hibit the same pharmakon structure identified here: the mechanism that creates systemic friction is also
the mechanism that reveals it. The connection between ROM’s persistence dynamics and developmental
psychology is explored in Farzulla (2025¢), which models maladaptive learning as corrupted transmis-
sion kernels—training data that generates persistent maladaptive patterns through the same selection-
transmission machinery that ROM formalizes.

The question worth asking, then, is not so much whether ROM is correct—four fields have already
validated its component parts—but rather why political philosophy has not yet adopted a formalism that

other fields have found so useful.

1.5 Roadmap

Section 2 establishes foundational definitions: scale, atomic units, persistence, friction. Section 3
presents the ROM axioms and their justification through convergent evidence. Section 4 develops the
mathematical machinery: coarse-graining, memory effects, the Ladder Constraint on scale-skipping.
Section 5 instantiates ROM for political philosophy: consent as friction-minimization, legitimacy as
survival probability. Section 6 addresses empirical operationalization and policy implications. Sec-
tion 7 provides a worked example applying the framework to medical delegation. Section § discusses

limitations, adjacent frameworks, and the descriptive-normative gap. Section 9 concludes.

2 Foundational Definitions

2.1 Primitive Concepts

Definition 2.1 (Scale). A scale S is a level of description characterized by a choice of minimal distin-

guishable unit and a characteristic spatiotemporal resolution. Scales are observer-relative measurement



choices, not objective features of reality.

Definition 2.2 (Atomic Agent). Given scale S, the atomic agent Atomyg is the minimal unit of analysis—
the entity treated as indivisible at that scale. At particle scale, Atom = elementary particle; at cellular
scale, Atom = cell; at institutional scale, Atom = institution. The atomic agent is not ontologically

fundamental; it is the unit relative to which dynamics are measured.
This scale-relativity of atomic units is established methodology:

» Physics: Effective field theory treats effective degrees of freedom as scale-dependent since Wein-
berg (1979)

* Biology: Multi-level selection theory establishes that selection level is a parameter of analysis
(Okasha, 2006)

* Economics: Agent-based modeling treats the “agent” as a modeling choice, not ontological prim-

itive

ROM adopts this stance: there is no privileged “fundamental” scale. Each scale has its appropriate

description; which to use is pragmatic (predictive success) rather than ontological.

2.2 Entropy Pressure and Persistence

Definition 2.3 (Entropy Pressure). Entropy pressure is the tendency for configurations to disperse toward
higher-entropy states in the absence of maintenance processes. Complex configurations tend to dissolve;

persistence requires active maintenance.

This is the second law of thermodynamics applied to pattern persistence. Schrodinger (1944) noted
that life maintains order against entropy; we generalize to any persistent pattern at any scale.

The key insight: What requires explanation is not why things change but why some things remain.
Persistence is non-trivial. Selection is what happens when some patterns persist better than others.

3 The ROM Axioms: Convergent Foundations

The following axioms characterize systems where ROM applies. Each axiom has independent confir-

mation from multiple fields.

Axiom 1 (Minimal Atoms). At any scale S, there exists a set of minimal units serving as carriers of

properties and loci of interactions.

Convergent evidence: This generalizes “interactors” in evolutionary theory (Hull, 1980), “agents”
in economics, and “degrees of freedom” in physics. Each field independently requires a notion of mini-

mal unit at each descriptive level.

Axiom 2 (Interaction Network). Atomic agents are embedded in an interaction network Gy, determining

which agents influence which others.

Convergent evidence: Network structure mediates dynamics in every field—social networks (New-
man, 2010), gene regulatory networks, financial contagion networks, neural networks. Recent work on
higher-order interactions demonstrates that hypergraph structure fundamentally alters cooperation dy-
namics beyond pairwise approximations (Alvarez-Rodriguez et al., 2021; Sadekar et al., 2025). The

mathematical apparatus (graph theory, spectral methods) transfers directly.



Axiom 3 (Entropy Pressure). In the absence of maintenance processes, configurations tend toward

higher-entropy states.
Convergent evidence: This is the second law of thermodynamics. No field disputes it.

Axiom 4 (Replication with Variation). Some patterns propagate—inducing similar patterns elsewhere.

Propagation occurs with variation: copies are imperfect.

Convergent evidence: This is the inheritance principle (Darwin, 1859; Lewontin, 1970). Biology
formalizes it as genetic transmission; cultural evolution as social learning (Boyd and Richerson, 1985);

economics as institutional diffusion; physics as pattern replication in dissipative systems.

Axiom 5 (Concentration). In the limit of large populations, macro-observables concentrate around ex-

pectations. Stochastic micro-dynamics yield approximately deterministic macro-dynamics.

Convergent evidence: This is the law of large numbers, concentration of measure (Ledoux, 2001).
Statistical mechanics, population genetics, and economics all rely on this principle.
4 Mathematical Machinery

4.1 The ROM Equation

Given the axioms, temporal evolution is governed by the weighted replicator-mutator equation:

) = Z pi(t') - ws(7') - ps(7', Gss, pi) - Ms(T" — T) — pi(T) - (D

’L"GTS

dpt(f
dt

This equation is not new. It is the standard replicator-mutator equation (Hadeler, 1981; Page and
Nowak, 2002), with temporal and spatial extensions well-characterized in Roca et al. (2009). Recent
generalizations extend the formalism in two important directions. Varga (2024) generalizes replicator
dynamics for evolutionary matrix games under time constraints—mandatory waiting periods between
interactions that are formally analogous to friction in our framework. The time constraint between inter-
actions maps directly onto ROM’s concept of dissipative friction: both represent structural impediments
that do not merely slow dynamics but fundamentally reshape the equilibrium landscape. Varga’s demon-
stration that the ESS-replicator relationship is restored via generalized dynamics under these constraints
supports ROM’s central claim that friction-generating mechanisms alter which configurations persist
rather than simply impeding convergence. The mathematical foundations for this infinite-dimensional
extension were established by Mendoza-Palacios and Herndndez-Lerma (2017), who proved stability
results for the replicator dynamics on separable metric strategy spaces, demonstrating that equilibrium
stability depends critically on the topology of the measure space—a result that constrains which coarse-
graining procedures preserve dynamical structure. Mendoza-Palacios and Hernandez-Lerma (2024) sub-
sequently generalize the replicator dynamics to metric strategy spaces evolving in Banach spaces of finite
signed measures, providing a rigorous infinite-dimensional framework connecting Nash equilibria sta-
bility to replicator dynamics. ROM’s scale-relative parameterization—where the type space Ts varies
with the choice of descriptive scale—implicitly operates within such a framework, and the Banach space
formulation provides the mathematical infrastructure for making the continuum limit of ROM dynamics

precise.

* p/(7): Frequency of type 7 at time ¢



* wg(7): Intrinsic weight (baseline replication capacity)

* ps(7,G, p): Survival probability given network and population state

Mg (7" — t): Transmission kernel (mutation/learning)

* ¢: Mean fitness (normalization)

4.2 Formal Equivalences

The claim that ROM connects to other formalisms is not analogy but structural identity—a rigorous
correspondence of mathematical form:

Price Equation. The discrete-time analogue yields the Price partition (Price, 1970):
_ 1 1
Az = —Cov(w,z) + —E[w- Az (2)
w w

This equivalence under discretization is proven in Page and Nowak (2002).

Information Geometry. Replicator dynamics have natural information-geometric interpretation via
the Shahshahani metric (Shahshahani, 1979; Hofbauer and Sigmund, 1998). Under detailed balance
conditions, ROM reduces to gradient flow on the Fisher-Rao manifold.

Remark 4.1 (Bayesian Interpretation). Under pure selection (no mutation), type frequencies evolve ex-
actly as posterior probabilities under iterated Bayesian updating (Bettencourt et al., 2025; Harper, 2009;
Czégel et al., 2022):

pi1(7) = WS(T)_. Pi(7) p(H|D) = p(D|H) - p(H)

\2 p(D)

3)

where fitness wg(7) corresponds to the likelihood function p(D|H )—the probability of observing envi-
ronmental data given type T as hypothesis. This correspondence clarifies what “optimization” means in
ROM: the system maximizes mutual information /(E,.7") between environmental states and type dis-
tributions, which is equivalent to maximizing average log-fitness. Selection thus implements predictive
optimization—configurations that better predict (track, reflect) environmental structure persist—rather

than utility maximization in the economic sense.

When the Bayesian Correspondence Breaks. The Bayes-replicator equivalence holds precisely
under pure selection. ROM’s extensions—mutation kernels and network dependence—modify this cor-
respondence in well-characterized ways. With mutation, ROM dynamics correspond to filtering in Hid-
den Markov Models (Akyildiz, 2017; Pathiraja and Wacker, 2024): the mutation kernel Ms(t" — 1)
represents transitions between hidden states (hypotheses), while selection provides likelihood weight-
ing. Network externalities make the “likelihood” endogenous, potentially inducing cyclic dominance
and limit cycles (Sato and Crutchfield, 2003; Galla and Farmer, 2013). The belief-transfer modulation
2(0',0) = exp(—y(0' — 0)) violates detailed balance whenever ownership perceptions differ between
configurations, causing dynamics to exhibit circulation around equilibria rather than monotonic con-
vergence. In non-stationary environments with mutation and network effects, “optimization” means
tracking a moving target rather than converging to a fixed optimum.

Reinforcement Learning. The connection between softmax policy gradients and replicator dy-

namics is explicit (Tuyls et al., 2003; Bloembergen et al., 2015). Under softmax action selection with



temperature 7, policy gradient dynamics reduce to:

= 7(a) (Q(a) - Q) @)

which is precisely the replicator equation with Q-values as fitness. The mutation kernel Mg in ROM
corresponds to exploration: temperature-modulated randomization that prevents premature convergence
to local optima.

Belief-Transfer and Kernel Modulation. The belief-transfer mechanism (where consent-holders
develop ownership psychology over domains they control) induces specific changes in the mutation ker-
nel. Let O(7) denote the average ownership-perception among agents in configuration 7. The mutation

kernel entries are modulated:
Ms(t — t) = Mo(7' — 7)-g(0(7'),0(7)) 5)

where M) is the baseline kernel and the ownership-modulation function takes an Arrhenius-like form:

8(0',0) =exp(—y(0'—0)), v>0 (6)

This suppresses transitions that reduce aggregate ownership perception, connecting micro-level psy-
chological processes to macro-level institutional dynamics. The distinctive prediction: regime transi-
tion probability should decrease exponentially with incumbent tenure, controlling for legitimacy and
resources—a specific functional form that generic “institutional stickiness” explanations do not gener-
ate. Appendix E provides convergent microfoundational derivations of this Arrhenius-like form from
statistical mechanics, Kramers rate theory, behavioral economics (loss aversion), and bounded rational-
ity (quantal response equilibrium).

Recent work by Balabanova et al. (2025) demonstrates that institutional incentives can be rigorously
incorporated into replicator-mutator dynamics through fitness modifiers. ROM’s legitimacy function L
acts as a positive institutional modifier (analogous to their reward component), while friction F pro-
vides the corresponding negative modifier. The survival probability ps = L/(1+ F) generalizes additive
incentive structures to the multiplicative form appropriate for survival probabilities.

Convergence and Limit Cycles. Not all learning dynamics converge, and this is a feature rather than
a limitation. Pangallo et al. (2019) demonstrate that convergence to Nash equilibrium is the exception
rather than the rule: most games produce best-reply cycles, limit cycles, or chaotic attractors. ROM
dynamics are no exception. Under detailed balance conditions on Ms—which require symmetric belief-

transfer between configurations—the dynamics reduce to gradient flow with quasi-potential:
V(t) =logL(t) —log(1+ F(7))+logws(7)

However, detailed balance generically fails in the consent-friction instantiation. The belief-transfer mod-
ulation g(0',0) = exp(—y(0’ — 0)) violates detailed balance whenever ownership perceptions differ
between configurations (Section 4.2), and asymmetric mutation kernels produce non-zero circulation
around the simplex interior (Appendix D, Counterexample 1). When detailed balance breaks, limit
cycles become the generic case: configurations orbit rather than converge, with friction-minimizing

regions acting as attractors in the time-averaged sense rather than as fixed-point equilibria.



This is not a defect but a prediction. Democratization-backsliding cycles—where regimes oscil-
late between liberalization and retrenchment—are precisely what limit cycle dynamics produce. The
oscillation occurs because legitimacy gains from liberalization shift ownership perceptions (increasing
0), which in turn raises transition barriers via the Arrhenius kernel, eventually generating sufficient la-
tent friction to trigger retrenchment. The cycle repeats at a characteristic frequency set by the ratio of
legitimacy accumulation to ownership-perception shift rates. The MARL validation (Farzulla, 2025a,
Appendix F) provides independent computational evidence: 99.3% of conditions achieve reward conver-
gence while only 0.85% achieve policy convergence—stable aggregate outcomes emerge from perpetual

strategic cycling, exactly the dynamic equilibrium that limit cycles describe.
4.3 The Kernel Triple

The key parameterization is (ps,ws, Ms) at each scale:

* ps: Survival function mapping type, network, population — persistence probability
* ws: Weight function assigning baseline capacity to types

* Mjy: Transmission kernel (row-stochastic)

Different domains instantiate different kernels:

Scale Atom Ps Mg

Cellular Cell Replication rate ~ Mutation

Organism Organism Darwinian fitness  Genetic transmission
Agent Intentional agent  Strategy payoff Learning, imitation
Institutional Institution Legitimacy Reform, evolution

4.4 Coarse-Graining and the Ladder Constraint

Scales connect via coarse-graining operators 7Ts_,s. When does coarse-graining preserve ROM struc-

ture?

Theorem 4.1 (Lumpability Conditions). Let 7 : Ts — T{ be a coarse-graining projection. Under stan-
dard regularity conditions (finite/countable type space, bounded survival function, row-stochastic muta-

tion kernel), ROM structure is preserved under 7 if and only if:

(i) Transition uniformity: For all T;, T, with n(1;) = n(1}), and all macro-types T': Yoojn(z)) =1 Mij =

Zr,:n:(r]):T’ Mg
(ii) Survival homogeneity: ps(7;) = ps(T;) whenever n(t;) = m(T)

When these fail, coarse-grained dynamics acquire memory terms (Mori-Zwangzig structure).

Proof sketch. (Sufficiency) Under (i) and (ii), define coarse distribution P(7",t) = ¥.1.z(r)—1 P(7,t). By

(ii), survival factors out; by (i), mutation sums collapse. Coarse dynamics satisfy ROM form.
(Necessity) If (i) fails, P(T’,z + Ar) depends on internal distribution p(t|7,7), introducing memory.

Similarly for (ii). The memory kernel K(7 — s) decays exponentially with rate determined by internal

spectral gap. |



Note on rigor. This is a proof sketch. Full formalization requires demonstrating that non-lumpable
coarse-graining yields Mori-Zwanzig memory terms explicitly. Geiger and Kedem (2022) establishes
that lumpability is generically rare (measure-zero in the space of Markov chains). Aristoff and Zhu
(2023) shows how memory can be systematically incorporated when lumpability fails, while data-driven
extraction of MZ operators (Tian et al., 2021) demonstrates empirical recovery of memory kernels.

Critical qualification. Memory effects are non-negligible precisely when internal equilibration
timescales are comparable to observation timescales. When strong time-scale separation holds, memory
terms decay rapidly and the Markovian approximation is accurate (the Chapman-Enskog regime).

This is not a novel result. It is the application of Markov chain lumpability theory (Kemeny and
Snell, 1976) and Mori-Zwanzig formalism (Mori, 1965; Zwanzig, 1961) to replicator dynamics. Physics
solved this problem decades ago.

The Ladder Constraint: Direct measurement at scale S+ 2 using atoms from scale S is generically

ill-posed. The error satisfies:
ES—=S+2)>e(S—=S+1)+e(S+1—=S+2)+ Anemory

This has known exceptions (RG fixed points, hierarchical symmetry, mean-field limits, strong time-
scale separation) but holds generically. Formal statement and proof sketch appear in Appendix B.1; con-
ditions under which the constraint relaxes are detailed in Appendix B.2. Network renormalization theory
(Villegas et al., 2023) provides rigorous grounding. Zhang et al. (2025) demonstrate that information-
preserving network compression requires merging structurally similar nodes; arbitrary compression de-

stroys flow structure.

4.5 Causal Emergence and Scale-Relative Validity

The scale-relativity of ROM connects to the theory of causal emergence (Hoel et al., 2013; Hoel, 2017).
Causal emergence occurs when coarse-grained descriptions exhibit higher effective information—a mea-
sure of causal determinism—than fine-grained descriptions.

Effective Information. For a transition matrix M, effective information EI(M) = HOY (M) —
(H°"'(M)) measures how deterministic dynamics are while retaining descriptive richness. Hoel et al.
demonstrate that coarse-graining can increase EI: macro-descriptions sometimes exhibit higher causal
determinism because aggregation eliminates degenerate causal pathways.

ROM Implication. If institutional-level dynamics exhibit higher EI than individual-level dynamics,
the institutional description is not merely convenient but causally superior for prediction. This resolves
a common objection to institutional analysis: the accusation of being “merely” descriptive dissolves
when macro-dynamics demonstrably exhibit higher causal determinism than their micro-constituents.
Cantner et al. (2019) demonstrate a related phenomenon in value chains: multi-layer structure can re-
verse apparent selection effects, with low-fitness firms persisting via high-fitness partners—precisely the
kind of emergent dynamics that single-scale analysis misses.

Recent work by Varley and Hoel (2022) formalizes emergence as information conversion: coarse-
graining can transform redundant information into synergistic information, creating genuinely new
causal structure at the macro level. For ROM, this means legitimacy dynamics at the institutional scale

may be causally irreducible to individual consent-holding dynamics.
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5 The Consent-Friction Instantiation

What follows is an application of ROM to political philosophy, which is to say an attempt to map the
traditional vocabulary of consent and legitimacy onto the dynamics that the preceding sections have

characterized.

5.1 Domain Specification

In this instantiation, atomic agents are consent-holding entities—individuals, groups, institutions, and

so forth—and the key quantities that characterize their interactions are:

* Stakes s5;(d): The magnitude of impact that domain d has on agent i, which is to say how much
agent i has at risk in decisions made within that domain

* Voice v;(d): Agent i’s actual influence over decisions in d, measured by whatever mechanisms of
input and control are available

* Friction: The tension that emerges when stakes and voice diverge, when those who bear the

consequences of decisions lack proportional influence over those decisions

Note on prior work. The legitimacy definition here—stakes-weighted voice—builds on the formal
framework developed in Farzulla (2025c), which establishes that legitimate governance requires propor-
tional influence for those affected by decisions. What ROM adds is the dynamical grounding: legitimacy
enters as survival probability in the replicator equation, meaning that configurations satisfying the legit-
imacy conditions persist while those violating them face selection pressure. The normative framework
from that earlier work becomes empirically testable once instantiated in ROM dynamics. Recent work
by Powers et al. (2023) provides independent support: their model of institutional coevolution shows
that the cost of consensus scales with group size and political inequality, selecting for hierarchy vs.
egalitarianism—a friction-driven mechanism consistent with ROM’s predictions about legitimacy and

institutional form.

5.2 The Friction Function

1+&(d,t)
Z L mA

1+ ai(d,1) ™

i

Where ¢; is alignment (correlation between agent’s interests and consent-holder’s actions) and &;

is information entropy (how much the consent-holder misunderstands the agent’s preferences). Formal
derivations of this functional form from Lagrangian optimization, information-theoretic, and diversity-

based first principles appear in Appendices A.1-A.3.

Remark 5.1 (Quadratic Refinement). The MARL factorial experiment (Farzulla, 2025a, Appendix F)
reveals a U-shaped alignment—friction relationship: neutral alignment (& = 0) produces the worst co-
ordination outcomes, while both cooperative and adversarial alignment reduce friction symmetrically.
This motivates a second-generation friction form F(?) = ¢(14-€)/(1 4 a?), which replaces the o — —1
singularity with a bounded maximum at & = 0. The quadratic form achieves R> = 0.34-0.43 versus

2 = 0.05-0.13 for the canonical specification (Section 6.4). The formal development—axiomatic
derivation under relaxed divergence conditions, uniqueness results, and agreement at a € {0,1}—
appears in Farzulla (2025a), Appendix F. The canonical form is retained throughout this paper as the
theoretical baseline; the quadratic form represents an empirical refinement whose domain of superiority
(the adversarial regime o < 0) is precisely characterized.

11



5.3 Pathologies: Observed versus Latent Friction

Some apparently low-friction systems achieve stability through suppression rather than genuine alignment—
authoritarian regimes can appear stable precisely because dissent is costly to express. The framework
accommodates this by distinguishing observed friction from latent friction, paralleling Kuran’s analysis

of preference falsification (Kuran, 1995):

* Observed friction: Friction that manifests in measurable behaviors—protest, litigation, noncom-
pliance, exit

* Latent friction: Friction that exists (stake-voice mismatch) but is suppressed through coercion,
censorship, or exit barriers

* Suppression cost: Resources expended to prevent latent friction from becoming observed—

surveillance, enforcement, propaganda, border control

The € term includes epistemic control: regimes that suppress information about alternatives, prevent
coordination among dissenters, and control exit options exhibit high €, which increases latent friction

even when observed friction is low.

Proposition 5.1 (Suppression Instability). Regimes with low observed friction but high latent friction
exhibit sudden tipping points when suppression costs exceed maintenance capacity or when exogenous

shocks reduce suppression effectiveness.

This predicts that apparently stable authoritarian regimes can collapse rapidly when suppression
costs exceed maintenance capacity, and that collapse probability correlates with the ratio of latent to
observed friction rather than with observed friction alone. Latent friction proxies include: private-public
opinion divergence (measurable through list experiments), revealed exit preference when barriers lower,
suppression expenditure as share of budget, and information control intensity.

5.3.1 Endogenizing Suppression

The preceding treatment takes suppression k as exogenous. A more satisfying formulation endogenizes

it through resource constraints. Define the suppression function and its consequences:

Definition 5.1 (Suppression Decomposition). For suppression intensity k(d,7) € [0,1], total friction

decomposes as:

Fobs(d,t) = F(d,t)- (1 —x(d,1)) (8)
Faent(d,t) = F(d,t) - x(d,1) 9)

where F(d,t) is the total friction generated by stake-voice mismatch.

Definition 5.2 (Resource-Drain Dynamics). Suppression capacity C(t) evolves according to:

dc

=) =y K() (1) (10)
t

where r(t) is the capacity replenishment rate (tax revenue, resource extraction, external support) and

y > 0 is the suppression cost coefficient. When C(¢) = 0, the regime can no longer sustain suppression:

K — 0 and latent friction manifests.
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The resource-drain equation generates a concrete tipping-point mechanism. High suppression (k ~
1) requires high capacity (C > 0), which depletes at rate ykF. The depletion rate increases with both
the level of suppression and the total friction being suppressed—a vicious cycle. Regimes that sup-
press high friction drain resources faster, accelerating toward the C = O tipping point. This is falsifiable:
security budget share of GDP, surveillance expenditure, and enforcement costs should correlate posi-
tively with both suppression duration and eventual transition magnitude. The companion treatment in
Farzulla (2025a) models suppression through an exponential accumulation framework that is formally

complementary to the resource-drain formulation here.

5.4 Legitimacy as Survival Probability

Definition 5.3 (Legitimacy). Legitimacy admits two complementary formulations that capture different
aspects of stake-voice alignment:
Stakes-weighted voice (the operational definition entering ROM dynamics):

_Lisivi

L(e) ==

(11)

This is the primary formulation: legitimacy as the stakes-weighted average of voice, which enters
directly into the survival function pg = L/(1+ F) in the replicator equation. (A generalized form incor-
porating performance competence is introduced in Remark 5.2 below.)

Total variation distance (a measurement proxy for distribution comparison):
I
LTV:1—§Z|si—vi| (12)
i

where §; = 5;/Y.;s; and ¥; = v;/ ¥ ;v; are normalized stakes and voice.

These formulations are complementary, not equivalent. Both equal 1 when stakes and voice are
perfectly aligned (§; = ¥; for all i), and both approach 0 under complete misalignment, but they measure
different aspects of alignment and produce different intermediate values. For instance, with § = (0.5,0.5)
and ¥ = (0.8,0.2): the stakes-weighted form yields L = 0.5 while the TV distance form yields Ly = 0.7.

The stakes-weighted form (11) is the definition that enters ROM dynamics; the TV distance form
(12) is useful as an empirical proxy when one wishes to compare stake and voice distributions directly

without assuming compatible measurement scales.

Legitimacy enters ROM as survival probability. High-legitimacy configurations persist; low-legitimacy

configurations face selection pressure proportional to the friction they generate.

Remark 5.2 (Generalized Legitimacy). The pure consent formulation L(C) captures voice-based legit-
imacy but leaves an empirical puzzle: competent autocracies with low voice alignment can persist for

decades. Following Farzulla (2025c¢), Postulate 1, we introduce the generalized legitimacy function:
Loen(C) = wi - Lyoice(C) +w2 - P(C) (13)

where Lyoice (C) is the stakes-weighted voice defined in Equation (11), P(C) > 0 is a performance/compe-
tence metric (economic growth, service delivery, security provision), and wy,w, > 0 are society-specific
weights on the consent-competence frontier.

Setting w, = 0 recovers the pure consent model; setting w; = 0 yields pure technocratic legitimacy.
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The generalized survival function ps = Lgen/(1 + F) resolves the annihilation paradox: configurations
with Lyoice = O but high P can survive because performance substitutes for consent—up to the point
where accumulated latent friction (Section 5.3) exceeds the performance buffer. All algebraic results
in this paper—simplex preservation, survival monotonicity, moving equilibrium existence—hold un-

changed under Ly, since they require only L > 0, which Ly, satisfies by construction.

5.5 The Bridge Principle

The bridge between description and normativity here requires some care, and we can state it in three
parts.

The descriptive claim is simply that configurations generating high friction are selected against, in
the same way that organisms with low fitness are selected against in biology or that dissipative structures
with high entropy production are selected against in physics—not because of any normative judgment
but because of the dynamics themselves.

The conditional normative claim is that if agents prefer lower friction—prefer arrangements where
they are not perpetually in tension with the structures that govern them—then friction-minimizing con-
figurations are instrumentally preferred, which is to say preferred as means to ends that agents already
have rather than as ends that must be justified from outside.

And the selection-grounding asks why we should assume agents prefer lower friction in the first
place, to which the answer is that agents with high friction-tolerance face elevated selection pressure,
meaning that the preference for friction-minimization is itself something that selection produces over
time.

What this avoids is the is-ought fallacy: we do not claim that friction-minimization is objectively
good or that it ought to be pursued for its own sake, only that it is what selection produces and that
agents who have survived selection tend to prefer it.

6 Operationalization

6.1 Measuring the Kernel Triple

» Alignment o: Survey congruence, revealed preference, voting patterns
» Stakes o (aggregate 0 = Y, s;): Economic exposure, affected interests, policy dependence
* Entropy &: Transparency indices, misperception scores, information asymmetry measures

* Friction F': Protest frequency, litigation rates, emigration, volatility, noncompliance

6.2 Falsifiability

The framework predicts:

1. Friction increases with stakes (holding alignment constant)

2. Friction decreases with alignment (holding stakes constant)

3. High-friction configurations are replaced faster than low-friction configurations
4. Legitimacy predicts stability

These are testable. If they fail empirically, the framework fails.
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6.3 Identifiability: Separating Survival from Fitness

A natural concern arises regarding the ROM equation’s two-component structure: the survival function
ps(7) and the intrinsic weight ws(7) appear in multiplicative form as wg(7) - ps(7), which raises the ques-
tion of whether these components can be separately identified from observational data. This parallels the
classical distinction in evolutionary biology between viability selection (differential survival to reproduc-
tive age) and fecundity selection (differential reproductive output conditional on survival)—components
that are conceptually distinct but often confounded empirically (Bonduriansky and Chenoweth, 2009;
Hadfield and Nakagawa, 2010).

6.3.1 The Identification Problem

In the ROM equation (Eq. 1), the product ws(7) - ps(7) determines the effective fitness of configuration
7. Given only observations of type frequency changes dp,(7)/dt, one cannot uniquely decompose this
product into its factors without additional structure. The problem is analogous to observing revenue
(price x quantity) without separate price and quantity data.

Formally, let ¢ (7) = wg(7) - ps(7) denote composite fitness. For any constant ¢ > 0, the transforma-
tions wi = c-ws and p§ = ps/c yield identical dynamics. Identification requires either:

1. Normalization constraints: Fixing one component’s scale (e.g., ws = 1)
2. Exclusion restrictions: Finding variation that affects one component but not the other

3. Structural assumptions: Positing functional forms with distinct observable implications

The consent-friction instantiation provides partial identification through the structural assumption
that ps = L/(1 + F), where legitimacy L and friction F have distinct empirical correlates. But this
leaves wg (resource endowment, organizational capacity) as a separate quantity requiring identification.

6.3.2 Proposed Identification Strategies

Three approaches offer paths to separate identification, drawing on methods from evolutionary biology,

econometrics, and institutional analysis.

Strategy 1: Shock-Based Decomposition. The key insight is that different types of shocks differen-

tially affect survival versus reproduction. Consider:

* Resource shocks (sanctions, budget cuts, capital flight) primarily affect wg by reducing the capac-
ity to maintain and replicate configurations, while leaving pg relatively unchanged in the short run.
A regime facing economic sanctions retains its legitimacy structure but loses replication capacity.

* Legitimacy shocks (scandals, electoral fraud revelation, constitutional crises) primarily affect pg
by altering the stake-voice alignment that determines survival probability, while wg may remain

intact. A regime exposed for electoral manipulation loses legitimacy before losing resources.

This suggests a difference-in-differences design: compare institutional trajectories before and after
shocks that are plausibly exogenous to survival but affect resources (e.g., commodity price collapses for
resource-dependent regimes) against shocks that affect legitimacy but not resources (e.g., revelations of
corruption in comparable regimes). The work of Miguel et al. (2004) on rainfall as an instrument for

economic shocks demonstrates the feasibility of this approach in related contexts.
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Strategy 2: Hazard Rate Decomposition. Survival analysis provides a more direct route. If we

observe regime duration data with multiple competing “exit” types, we can estimate:
h(fat) = hresource(fat) +hlegitimacy(fat) (14)

where the cause-specific hazard /esource captures exits due to resource exhaustion (military defeat,
bankruptcy, organizational collapse) and /ijegitimacy Captures exits due to legitimacy failure (revolution,
mass defection, electoral defeat) (Austin et al., 2016). The relationship to ROM parameters is:

hresource(f) o< I/WS(T) (15)
hlegitimacy(f) o< l/pS(T) = (1 +F(T))/L(T) (16)

Empirically, this requires coding regime transitions by cause—a substantial undertaking but one

with precedent in political science datasets such as Polity V and Varieties of Democracy.

Strategy 3: Cross-Sectional Variation in Constraints. An alternative exploits variation in the bind-
ing constraint across configurations. Some regimes are resource-rich but legitimacy-poor (rentier states
with low consent); others are resource-poor but legitimacy-rich (grassroots movements with high consent
but limited capacity). The marginal effect of resources on persistence should be larger for legitimacy-
rich configurations (where pgs is not the binding constraint), and conversely.

This generates a testable interaction: d(persistence)/d(resources) x L should be positive if resources

and legitimacy are separately identified. If the interaction is zero, we cannot distinguish the components.
6.3.3 Application: Regime Transitions and Reform

The decomposition has direct empirical applications:

Authoritarian persistence. Resource-based autocracies (oil states, extractive regimes) have high wg
but variable ps. The Acemoglu-Robinson framework on institutional persistence (Acemoglu et al., 2020)
emphasizes that such regimes exhibit “strategic stability”—persistence arising from fear of subsequent
changes rather than genuine legitimacy. In ROM terms, high wg can substitute for low ps up to a
threshold, but legitimacy shocks (Arab Spring, color revolutions) reveal latent friction that resources
had suppressed.

Democratic consolidation. Democratic transitions involve simultaneous changes in both compo-
nents: reduced coercive capacity (wg declines) but increased procedural legitimacy (pg rises). The net
effect on persistence depends on which change dominates. The finding that intermediate regimes are
most conflict-prone (Hegre et al., 2001) may reflect configurations where both components are moder-
ate, leaving persistence fragile.

Institutional reform. Reforms that increase voice without increasing resources (participatory bud-
geting, consultation mechanisms) should increase pg while leaving ws unchanged. Reforms that increase
capacity without addressing legitimacy (technocratic restructuring, efficiency drives) should increase wg
while leaving ps unchanged. Tracking whether persistence changes differentially under these reform
types provides a test of component separability.

6.3.4 Limitations and Caveats

Several caveats apply:
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1. Interaction effects. Resources and legitimacy may interact: resource abundance enables patron-
age that purchases legitimacy, while legitimacy enables resource extraction. Pure identification
requires assuming these interactions are second-order, which may not hold.

2. Measurement error. Both components are measured with error. Instrumental variable approaches
require instruments that affect one component cleanly, but most real-world variation affects both
to some degree.

3. Temporal dynamics. The distinction may be clearer in the short run than the long run. Over
time, resource advantages translate into legitimacy advantages (path dependence in institutional
development) and vice versa.

4. Scale dependence. Identification may be easier at some scales than others. At the organizational
level, resource constraints (budgets, headcount) are often directly observable. At the civilizational

level, the distinction may be more metaphorical than measurable.

Despite these limitations, the distinction between survival probability and reproductive capacity is
not merely philosophical. It has concrete implications for intervention design: policies targeting re-
sources versus policies targeting legitimacy should have distinguishable effects on persistence dynamics,

and the framework provides the theoretical scaffolding for testing this empirically.

6.4 Computational Validation: ROM vs IQL

A validation study' compares ROM dynamics directly against Independent Q-Learning (IQL) agents

across a 3 x 3 x 3 factorial design varying alignment, stakes, and entropy (27 conditions per algorithm):

Metric ROM IQL
Mean consent violation rate 0.750 0.772
Stakes— violations correlation r=0.74 r=0.84
Statistical significance p <0.0001 p<0.0001
ROM vs IQL difference p=0.70 (n.s.)

The convergence between ROM (evolutionary selection dynamics) and IQL (temporal-difference
learning) provides independent validation of the friction function’s form. The relationship F « (1 +
€)/(1+ o) captures coordination dynamics that are invariant to the specific learning algorithm—whether
agents update via replicator dynamics or Q-learning, stakes amplifies friction multiplicatively. This is
not analogy but structural identity: both formalisms describe the same underlying dynamics through

different parameterizations.
6.4.1 Statistical Inference

To provide proper inferential grounding, we report confidence intervals, effect sizes, and hypothesis tests
for the key validation results.

Stakes-violations relationship. The Pearson correlations between stakes and consent violation rates
yield 95% confidence intervals via Fisher z-transformation: ROM r = 0.74 [0.49, 0.88], IQL » = 0.84
[0.66, 0.93] (n = 27 conditions each). Both intervals exclude zero, confirming statistically reliable re-
lationships. Cohen’s ¢ for the difference between correlations is g = 0.27 (small-to-medium effect),
consistent with the non-significant between-algorithm comparison (p = 0.70): the two algorithms pro-

duce similar friction-violation relationships.

IRepository: https://github.com/studiofarzulla/consent-rom-empirical
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Canonical friction form. Regressing consent violation rates on the canonical friction function
F =o0(1+¢)/(1+a) yields R* = 0.05-0.13 across experimental conditions. The regression coefficient
for the canonical form is 3 =0.031[0.008, 0.054] (p = 0.009, 95% CI), with partial n> = 0.11 (medium
effect by conventional benchmarks). The effect size confirms that while variance explained is modest,
the relationship between the friction function and consent violations exceeds chance by a meaningful
margin.

Quadratic vs. canonical form. The quadratic specification (R? = 0.34-0.43) yields partial n? =
0.38 (large effect), with a coefficient of [§quad =0.04710.029, 0.065] (p < 0.001). The improvement over
canonical is AR? = 0.29, F(1,24) = 10.7, p = 0.003—a statistically reliable improvement that supports
the quadratic functional form. See Remark 5.1 for the formal development and Farzulla (2025a), Ap-
pendix F for the axiomatic derivation under relaxed divergence conditions.

Between-algorithm comparison. A paired 7-test across 27 matched conditions yields #(26) = 0.39,
p =0.70, Cohen’s d = 0.08 (negligible effect). The 95% confidence interval for the mean ROM-IQL
difference in violation rates is [—0.095,0.052], consistent with the structural identity claim: the two
algorithms produce statistically indistinguishable friction-violation dynamics.

These results support two conclusions: (1) the friction function identifies the correct variables
and qualitative relationships with medium-to-large effect sizes, and (2) the specific functional form is
open to refinement, with quadratic terms capturing additional variance beyond the canonical linear-in-

parameters specification.

6.5 Policy Implications

The ROM framework yields concrete guidance for institutional design. If friction from stake-voice

mismatch is the quantity that selection acts upon, then policy should target friction directly:

1. Friction diagnosis before intervention: Measure friction proxies (protest, litigation, noncompli-
ance) before redesigning institutions. High friction indicates where change is coming; low friction
indicates stability worth preserving.

2. Alignment over expansion: Expanding voice mechanically (more voting, more participation
channels) does not reduce friction if it does not improve alignment. Participation that does not
track stakes creates noise, not legitimacy.

3. Transparency as entropy reduction: Information asymmetry (€) amplifies friction for any given
alignment level. Transparency interventions—disclosure requirements, open governance, legibil-
ity mandates—reduce friction through the (1 + €) term, independent of alignment changes.

4. Scale-appropriate intervention: The Ladder Constraint implies that macro-level reforms must
work through meso-level institutions. Attempting to redesign national institutions while ignoring
local and organizational intermediaries generates the memory effects that frustrate implementa-

tion.

This connects to mechanism design for legitimacy (Kirneva and Nuiiez, 2023), which shows how
to design institutions where legitimacy-maximizing configurations are equilibrium outcomes rather than
merely attractors. The ROM framework explains why such mechanisms work: they create fitness land-

scapes where friction-minimizing configurations are stable.
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6.6 Case Study: Systemic Risk and Financial Governance

Financial networks provide an empirically grounded test case for ROM’s predictions about friction,
legitimacy, and institutional survival (Battiston et al., 2016b). The Aggregated Systemic Risk Index
developed in Farzulla and Maksakov (2025) operationalizes this connection for cryptocurrency markets,
treating systemic risk as emergent friction from distributed sources across DeFi protocols, stablecoins,
and cross-chain bridges.

Friction in Financial Networks. The “complexity-induced friction” identified in systemic risk
research corresponds precisely to the stake-voice mismatch in ROM. Interconnected institutions bear
stakes in counterparty health (systemic exposure) but lack voice over counterparty decisions (no gov-
ernance rights over other banks). This generates structural friction that manifests as volatility during
stress.

DebtRank as Friction Proxy. The DebtRank measure (Battiston et al., 2016a) quantifies how dis-
tress propagates through network topology. In ROM terms, DebtRank centrality measures stakes-at-risk:
institutions with high DebtRank have large ¢ but typically limited voice over the counterparties whose
failure would destroy them. The friction function F = o(1 +¢€)/(1 + o) predicts that high-DebtRank
institutions face elevated selection pressure during stress periods—precisely what empirical studies doc-
ument.

Regulatory Legitimacy. Financial regulation faces the same friction dynamics as political insti-
tutions. Regulations that impose costs (stakes) without stakeholder input (voice) generate compliance
friction that manifests as regulatory arbitrage, forum shopping, and creative circumvention. The finding
that estimation accuracy decreases with network complexity (Battiston et al., 2016a) supports ROM’s
prediction that high-friction configurations exhibit unstable dynamics: legitimacy (regulatory accep-
tance) cannot be reliably estimated when complexity-induced friction is high.

Prediction. Regulatory interventions that reduce stake-voice mismatch—such as stakeholder repre-
sentation in macroprudential bodies, transparency requirements, or systemic importance weighting for
governance voice—should reduce observed friction (volatility, arbitrage, noncompliance) compared to

interventions that address symptoms without altering the underlying misalignment.

6.7 Illustrative Case: Cryptocurrency Governance

Decentralized autonomous organizations (DAOs) provide an unusually clean test case for ROM predic-
tions because stake-voice relationships are explicit and recorded on-chain (Fritsch et al., 2022; Beck
et al., 2018). Blockchain governance represents institutional technology evolution in observable form
(Allen et al., 2020).

Operationalization. The kernel triple maps directly to blockchain governance:

Variable Operationalization Data Source

Stakes o Token holdings x protocol usage On-chain balances, transaction history
Alignment @  Voting pattern correlation with outcomes Governance proposal data

Entropy € Technical participation asymmetry Forum engagement, delegate distribution
Friction F Chain splits, proposal rejections, exits Fork events, voting records, TVL flows

Empirical pattern. Studies of major DAOs (Uniswap, Compound, ENS, Aave) reveal extreme

voting power concentration: Gini coefficients exceed 0.98 and the top 10 addresses typically control
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majority voting power (Fritsch et al., 2022). In ROM terms, this represents high-stakes configurations
where voice is radically misaligned with stake distribution—small holders bear protocol risk without
proportional governance input.

ROM predictions. The framework predicts:

(i) Fork probability: Protocols with higher o(1+ ¢€)/(1+ o) should experience more contentious

governance disputes and chain splits.

(i) Post-fork survival: Following a fork, the chain with higher stakes-weighted voice (legitimacy L)
should retain more users and value.

(iii) Arrhenius tenure effect: Protocol “regime” duration should follow exponential survival curves
with incumbent advantage, testable via hazard models on governance leadership changes.

(iv) Suppression instability: DAOs with low observed friction (few proposals rejected, stable TVL)
but high latent friction (extreme voting concentration, low participation rates) should exhibit sud-

den governance crises when coordination costs decline.

The Bitcoin SegWit dispute (2017) and Ethereum DAO fork (2016) provide natural experiments
where stake-voice mismatch generated sufficient friction to force protocol-level reconfiguration. Post-
fork analysis shows the surviving chains were those where legitimacy—stakes-weighted voice—was

higher, consistent with ROM’s selection mechanism (Atik and Gerro, 2018).

7 Worked Example: Medical Delegation

To demonstrate the framework’s analytical power, we trace a complete example through the formal
machinery. Consider medical decision-making: a patient (consequence-bearer) delegates treatment de-
cisions to a physician (consent-holder) for a chronic condition requiring ongoing management.

Variable operationalization: Patient stakes s;(d) = severity x duration x reversibility, with aggre-
gate stakes 0 = Y ,;5;(d) used in the friction equation. Patient decision share C; ;4 ranges from 0 (pure
paternalism) to 1 (full autonomy). Alignment ¢;; measures correlation between patient values and clin-
ical best practices. Entropy € is the proportion of patient preferences unknown to the physician.

Scenario 1: Paternalistic care. A patient with limited health literacy faces a complex diagnosis.
The physician holds near-total authority (C; ;4 = 0.1). Even with good intentions (& = 0.7), high entropy
(€ = 0.6) means the physician optimizes for clinical outcomes while missing the patient’s preference for
mobility over longevity.

Result: L(d) ~ 0.1 (low legitimacy). Predicted friction: F = ¢ -(1.6)/(1.7) = 0.940 (high friction
despite good alignment). Manifestations: treatment non-adherence, second opinions, complaints.

Scenario 2: Shared decision-making. Same patient, but with structured preference elicitation.
Decision aids reduce entropy to € = 0.2; patient input is weighted meaningfully (C; ;4 = 0.5).

Result: L(d) ~ 0.5 (improved). Predicted friction: F = o -(1.2)/(1.7) = 0.710 (reduced). Mani-
festations: higher adherence, patient satisfaction.

Scenario 3: Misaligned autonomy. A patient with strong alternative medicine preferences holds
high authority (C; ; = 0.8) but their preferences diverge from clinical guidelines (ot = 0.2), with moderate
entropy (¢ = 0.4).

Result: L(d) ~ 0.8 (high legitimacy by voice-stake alignment). But friction: F =o-(1.4)/(1.2) =
1.170 (high due to low alignment).
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This illustrates that legitimacy and friction are distinct dimensions. High legitimacy (patient voice
matched to patient stakes) can coexist with high friction (physician experiences patient choices as harm-
ful). The framework does not adjudicate who is “right”—it predicts where tensions will manifest.

Implications: (1) reduce entropy via structured preference elicitation; (2) increase legitimacy via
shared decision-making protocols; (3) when alignment is structurally low, friction is irreducible—the
policy question becomes whether to prioritize autonomy (accept friction) or paternalism (reduce friction

at legitimacy cost).

8 Discussion

The preceding sections present ROM as a unified apparatus for persistence-conditioned dynamics and
apply it to political philosophy through the consent-friction instantiation. Before concluding, we address
four issues that bear on the framework’s scope, interpretation, and honest assessment: the boundary
conditions under which the convergence claim weakens, the relationship between ROM and adjacent
formalisms, the interpretation of low R? values in the computational validation, and the gap between

descriptive and normative claims.

8.1 Limitations and Boundary Conditions

The convergence claim—that physics, biology, economics, and cultural evolution have arrived at the
same formal structure—is strongest where the axioms hold cleanly: large populations, well-defined
types, measurable fitness differentials, and sufficient time-scale separation between micro-dynamics
and macro-observables. Several domains push against these conditions in ways that deserve explicit
acknowledgment.

Small-population regimes. The concentration axiom (Axiom 5) requires large populations for
stochastic micro-dynamics to yield approximately deterministic macro-dynamics. In small groups—
startup teams, village councils, early-stage movements—drift dominates selection, and the replicator
equation becomes a poor approximation. Finite-population corrections exist (e.g., Traulsen et al., 2006;
Nowak et al., 2004), but they introduce substantial analytical complexity and weaken the cross-domain
mapping that ROM relies on. The formalism is most reliable for populations large enough that the law
of large numbers provides reasonable approximation.

Scale sensitivity. The Ladder Constraint (Section 4.3) establishes that direct measurement across
non-adjacent scales is generically ill-posed, but it does not specify how many scales any given system ac-
tually has. In practice, identifying the “right” scales is a modeling choice that the formalism itself cannot
resolve. At sufficiently fine scales (individual neural firings, individual market transactions), the atomic
units become so numerous and their interactions so complex that computational tractability becomes the
binding constraint rather than any formal limitation. At sufficiently coarse scales (civilizational dynam-
ics, geological time), the timescales over which selection operates may exceed any practical observation
window.

Ontological modesty. The convergence claim is about mathematical structure, not ontological unity.
We claim that the same equations recur because they describe a real pattern in how persistent systems
behave under pressure. We do not claim that political legitimacy “is” biological fitness, or that insti-
tutional evolution “is” natural selection in any deep metaphysical sense. The equations are the same;
the substrates are different; and whether this convergence reflects a single underlying reality or merely

a shared mathematical convenience is a question that the formalism itself cannot answer. The useful
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analogy is dimensional analysis in physics: the fact that many disparate phenomena obey power laws
does not mean they share a common cause, only that the mathematical structure of scaling constrains
what forms solutions can take.

Computational tractability. Full specification of ROM dynamics requires knowledge of the trans-
mission kernel Mg, the survival function pg, and the network structure Gs,—quantities that are in prac-
tice estimated with substantial uncertainty. The identifiability analysis in Section 6.2 addresses some of
this, but the honest assessment is that empirical instantiation of ROM in any specific domain will involve
considerable simplification of the formal apparatus. This is not unusual for mathematical frameworks at
this level of generality, but it means that the gap between formalism and empirical test is wider than the

notation might suggest.

8.2 Comparison with Adjacent Frameworks

ROM is not the first framework to attempt cross-domain unification of selection and persistence dynam-
ics. Several adjacent formalisms share significant structure, and it is worth being precise about what
ROM adds to each.

Mori-Zwanzig formalism. The Mori-Zwanzig projection operator method (Mori, 1965; Zwanzig,
1961) provides the mathematical foundation for coarse-graining in ROM: when lumpability conditions
fail, memory terms emerge. ROM generalizes Mori-Zwanzig in one direction—applying it beyond
physics to biological and institutional dynamics—but loses some of Mori-Zwanzig’s rigor in the process.
Specifically, Mori-Zwanzig in statistical mechanics operates on well-defined Hamiltonian systems where
the projection operator has precise spectral properties; ROM’s application to institutional dynamics
involves substrates where no Hamiltonian exists and the “memory kernel” is a metaphor grounded in
formal analogy rather than derivation from first principles.

Renormalization group. The renormalization group (RG) (Wilson, 1971; Kadanoff, 1966) shares
ROM’s scale-separation logic: effective descriptions at different scales are connected by flow equations,
and universality classes emerge when systems with different microscopic details share the same macro-
scopic behavior. ROM borrows this insight but applies it more loosely than RG practitioners would
accept. RG provides precise predictions about critical exponents and universality classes; ROM makes
qualitative predictions about scale-relative dynamics without the quantitative precision that RG achieves
in condensed matter physics. The trade-off is scope: RG works precisely in specific physical systems,
while ROM works approximately across substrates.

Price equation. The Price equation (Price, 1970) partitions evolutionary change into selection and
transmission components in a substrate-neutral manner, and ROM’s replicator-mutator equation reduces
to the Price equation under discretization (Page and Nowak, 2002). What ROM adds beyond the Price
equation is the dynamical structure: the Price equation is a statistical identity that holds for any selection
process, while ROM specifies how the fitness landscape, transmission kernel, and network structure
co-evolve. The Price equation tells you how to decompose change; ROM tells you (in principle) how
change unfolds.

Free Energy Principle. The Free Energy Principle (FEP) shares ROM’s ambition to provide a
unified account of persistence under selection pressure, and arrives at a similar conclusion: persistent
systems minimize a quantity (free energy / friction) that measures the gap between current states and
preferred states. The key difference is scope of claim: FEP makes strong claims about the internal states

of agents (they must perform approximate Bayesian inference), while ROM makes weaker claims about
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population-level dynamics without requiring any particular cognitive architecture. ROM is agnostic
about whether individual agents perform inference; it requires only that populations exhibit selection
and transmission.

What ROM adds beyond any of these individually is the cross-domain mapping claim: not just that
each domain has selection dynamics, but that the specific parameterization (ps,ws,My) at each scale
provides a common language for translating between domains. Whether this adds genuine explanatory
power beyond what each field already possesses with its own tools is a question that only empirical

application can resolve.

8.3 Interpreting Low R?

The computational validation in Section 6.4 reports R* values of 0.05-0.13 for the canonical friction
form F = o(1+¢€)/(1 + a) predicting consent violation rates, with the quadratic variant achieving
R? = 0.34-0.43. These values deserve honest interpretation.

An R? of 0.05-0.13 means the canonical friction form explains between 5% and 13% of the variance
in consent violation rates across experimental conditions. This is low by the standards of predictive
modeling, and we should not pretend otherwise. However, two considerations bear on interpretation.

First, the canonical form is a structural model, not a predictive one. It claims that friction has
the functional form o(1+ €)/(1 + a)—that stakes amplifies friction multiplicatively, that entropy and
alignment enter through specific channels. The validation confirms the qualitative predictions: friction
increases with stakes (r = 0.74-0.84, p < 0.0001), decreases with alignment, and the ordering across
conditions matches the theoretical predictions. Low R> with correct directional predictions and high
statistical significance is characteristic of structural models that capture the right qualitative dynamics
while missing variance attributable to factors outside the model’s scope (agent heterogeneity, learning
dynamics, stochastic exploration). This pattern is common in structural models across fields: many
well-validated physics models of complex systems explain little variance in individual instances while
capturing ensemble properties accurately.

Second, the ablation study shows that the quadratic form substantially outperforms the canonical
form (R? = 0.34-0.43), suggesting that the true friction function may involve nonlinear amplification
that the canonical form’s linear-in-parameters structure does not capture. This is a genuine finding, not
an embarrassment: it suggests specific directions for theoretical refinement of the friction function while
confirming that the overall structure (o, €, ¢ as the relevant variables) is correct.

The honest summary: the canonical friction form captures the qualitative pattern (direction, order-
ing, significance) but explains modest variance. The quadratic variant does substantially better. The
framework identifies the right variables and the right qualitative relationships; the precise functional

form remains open to refinement.

8.4 Separating Descriptive from Normative Claims

ROM is fundamentally a descriptive framework: it claims that persistent systems exhibit selection-
transmission dynamics with measurable friction, and that these dynamics are formally identical across
substrates. The consent-friction instantiation maps political concepts onto these dynamics. But the gap
between “this is how persistence works” and “this is how governance ought to work™ requires care.
The descriptive claim is that configurations generating high friction face elevated selection pres-

sure and are, other things equal, replaced by lower-friction alternatives over time. This is an empirical
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prediction: it can be tested by observing whether high-friction regimes have shorter durations, higher in-
stability, or more frequent reconfiguration than low-friction regimes. The normative question—whether
friction-minimization is desirable—does not follow from the dynamics alone.

Three positions are available. The selectionist position holds that what selection produces is, by
virtue of having survived, instrumentally good for the agents involved: low-friction configurations per-
sist because the agents within them face less tension, and the preference for lower tension is itself a
product of selection. This avoids the is-ought fallacy by grounding normativity in agent preferences
rather than in the dynamics, but it inherits the limitations of any preference-satisfaction account: some
low-friction configurations achieve stability through suppression rather than genuine alignment (Sec-
tion 5.3).

The instrumentalist position holds that ROM is useful for predicting where instability will emerge
and which interventions will reduce it, without making any claim about whether stability is desirable. On
this view, ROM is a diagnostic tool: it identifies friction, predicts its consequences, and leaves normative
judgment to external criteria. This is the most defensible position but also the least interesting—it
reduces ROM to an elaborate measurement instrument.

The bridging position, which we tentatively endorse in Section 5.5, holds that the conditional nor-
mative claim (if agents prefer lower friction, then friction-minimizing configurations are instrumentally
preferred) does genuine philosophical work by connecting the formal dynamics to questions about in-
stitutional design. The bridge is conditional on a preference that selection tends to produce—a weaker
claim than “friction-minimization is objectively good” but a stronger claim than mere description.

What ROM cannot do, and should not be asked to do, is resolve foundational questions in political
philosophy about the nature of legitimacy, the scope of consent, or the grounds of obligation. What
it can do is reframe these questions in terms that make them empirically tractable: instead of asking
whether a regime is “legitimate” in some abstract sense, one can ask whether it generates friction that
will eventually select against it. This does not answer the normative question, but it changes the terms

on which the question is debated—from philosophy to measurement.

9 Conclusion

Four fields—physics, biology, economics, and cultural evolution—have converged on what is essentially
the same formal machinery for describing persistence-conditioned dynamics, the same mathematics of
selection and transmission and scale-relative parameterization appearing independently in each because
it describes something real about how persistent systems behave under pressure.

Political philosophy has not yet adopted this machinery, and continues to debate consent and legit-
imacy in terms that do not engage with what other fields have learned about how configurations persist
or fail to persist, how friction accumulates and dissipates, how selection operates across scales. This is
not a criticism so much as an observation: the tools exist but have not been translated.

What this paper attempts to provide is something like a translation manual, a way of mapping the tra-
ditional vocabulary of political philosophy onto dynamics that are already well-characterized elsewhere.
Consent becomes friction-minimization, legitimacy becomes survival probability, and the long-running
debates about who should hold authority and under what conditions become empirical questions about
which configurations generate sustainable friction levels and which do not.

The contribution here is not a new formalism but rather recognition that the formalism already exists,

proven across multiple fields through independent methods, and that perhaps political philosophy might
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find it useful in the same way that those other fields have—not as a replacement for normative inquiry
but as a way of grounding normative questions in dynamics that can actually be measured, tested, and
potentially resolved.

Friction Form Ablations

We conducted ablation studies comparing the canonical friction form F = ¢(1+¢€)/(1+ o) against five
alternatives: linear (F = 0 + € — o), alternative multiplicative (F = 6 - £/(1 4 a)), threshold (canonical
with dead-zone), quadratic (F = o(1 +£2)/(1 + a?)), and logistic (saturation form). Using 3 x 3 x 3
factorial designs across (¢, 0, €), we regressed consent violation rates on each friction form.

The quadratic form yielded highest R? (0.34-0.43 across conditions; Pearson r = 0.58-0.65, p <
0.01) compared to canonical (R? = 0.05-0.13). This suggests squared terms may better capture nonlinear
friction dynamics, though the canonical form remains theoretically motivated. Model comparison via
AIC/BIC favored the quadratic specification. Full ablation results including Spearman correlations and

effect sizes are provided in the supplementary code repository.

Code Availability

Multi-agent reinforcement learning simulation code implementing ROM dynamics, validating the fric-
tion function across factorial experimental designs, and running the friction form ablation study is avail-

able at two repositories:

* friction-marl: 5 x 5 x 5 factorial design with IQL agents, regression analysis, and model com-
parison. https://github.com/studiofarzulla/friction-marl
* consent-rom-empirical: 3 x 3 x 3 factorial design comparing ROM and IQL agents directly, with

consent violation rate as outcome. https://github.com/studiofarzulla/consent-rom-empirical
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A Friction Function Derivations

A.1 Lagrangian Derivation of the Friction Function

This appendix provides the formal derivation of the friction function F = o(1 +¢€)/(1 + a) from con-
strained optimization principles. The derivation proceeds in four steps: specification of the optimization
problem, construction of the Lagrangian, solution via first-order conditions, and interpretation of the

resulting form.
A.1.1 The Optimization Problem

Consider a governance system with n stakeholders indexed by i € {1,...,n}. Each stakeholder i has:

 Stakes s; > 0: the magnitude of impact from decisions in domain d
* Voice v; > 0: actual influence over decisions

* Preference signal 6; € R: the stakeholder’s ideal outcome

The consent-holder observes a noisy signal 6; = 6; + 1; where 7; represents information loss with
variance proportional to &. The alignment between the consent-holder’s action a and stakeholder i’s true
preference is o; = corr(a, 6;).

Objective. The governance system seeks to minimize total coordination cost—the aggregate dissat-
isfaction weighted by stakes:

min  C(v) = Xn:si-ci(v,-,oc,-,si) 7

Vi,..3V .
155V i=1

where ¢; is the individual friction cost for stakeholder i.

Constraint. Total influence is normalized—voice must sum to a fixed capacity:

vi=VW (18)

D=

1

where Vj represents total governance capacity (set to 1 without loss of generality for normalized sys-

tems).

A.1.2 Specifying the Individual Cost Function

The individual friction cost ¢; must satisfy three requirements grounded in the nature of governance
friction:

(i) Information costs amplify friction. When & > 0, the consent-holder acts on noisy signals,
increasing expected divergence from stakeholder preferences. This enters multiplicatively: higher

entropy means proportionally more friction at any alignment level.

(i) Alignment reduces friction. When o; > 0, the consent-holder’s actions correlate positively with
stakeholder preferences, reducing friction. Perfect alignment (¢; = 1) minimizes but does not

eliminate friction when € > 0.
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(iii) Baseline friction is irreducible. Even with perfect information (¢ = 0) and perfect alignment

(a = 1), some coordination cost remains from the delegation itself.

The simplest functional form satisfying these requirements is:

(1 *V[)(l +8,')

ci(vi, 0, &) = +a
1

(19)

Interpretation. The term (1 — v;) captures the voice deficit: friction arises when stakeholders bear
stakes without proportional voice. The numerator (1 + &) amplifies friction through information loss
(the +1 ensures baseline friction when € = 0). The denominator (1 + o) attenuates friction through
alignment (the +1 ensures finite friction when o = 0 and prevents singularities when o = —1 at the
boundary).

A.1.3 Lagrangian Formulation

Substituting (19) into (17) and introducing the constraint (18) via Lagrange multiplier A:

g(v,l):isi-(lmw—i-l(ivi—VO) (20)

i=1 I+a i=1

First-order conditions. Taking partial derivatives:

0.2 sil+e) si(1+8)
8v,- 1+ o TA=0 = A=T” 1+ o D
07 &
2 Y = V=0 (22)
ey

Equilibrium condition. From (21), at the optimum the marginal cost reduction from additional

voice must be equal across all stakeholders:

Si(l—i—gi) . Sj(l‘i‘&'j)

- A Vi 23
It 1+o b 3

This is the equimarginal principle: governance capacity should be allocated such that the marginal
friction reduction per unit voice is equalized across stakeholders.

A.1.4 Deriving the Friction Function
Aggregation. Total friction at the optimum is:

1—V 1+€i)
2 i T 24
S 1+ o @)

For the case of homogeneous entropy and alignment across stakeholders (a common simplifying

assumption in governance models), let € = € and o; = « for all i. Then:

e 1tE
HaZs, (1—v}) (25)
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Stake-voice mismatch. Define aggregate stakes ¢ = };s; and the stakes-weighted voice deficit:

A

(ngE

si(l—vi)=0— Zsiv:-‘ (26)
1 i=1

i

When voice is allocated proportionally to stakes (v; = s;/c under the normalization Vy = 1), the

deficit becomes:

o o2

n . .2 .52
AZG—ZSi'ﬁZG—lel =G<1— lsz) (27)
i-1 O

For a single representative stakeholder (or equivalently, treating the aggregate as a single unit), A =
6(1 —1) = 0 under perfect proportionality. The friction function captures deviations from this ideal:

1+¢
1+ «a

F=o0 (28)

where ¢ now represents the aggregate stakes at risk, and the ratio (1+¢€)/(1+ ) is the friction

multiplier that converts stakes into actual friction given the information and alignment environment.
A.1.5 Interpretation and Comparative Statics

The friction function (28) admits clear comparative statics:

Parameter Effect on F Interpretation

ot F7 Higher stakes amplify friction
er F1 Information loss increases friction
af Fl Better alignment reduces friction

Boundary behavior. The form is well-defined for o € (—1,1]:

* At a = 1 (perfect alignment): F = o(1 + €)/2, friction persists due to information loss

* At a =0 (no alignment): F = o (1 + €), baseline friction

* As o — —1 (anti-alignment): F' — oo, divergent friction indicating system collapse
A.1.6 Assumptions and Extensions

The derivation rests on several assumptions that could be relaxed:

1. Separable costs. Individual friction contributions are additive. Relaxing this to allow interaction

effects would introduce cross-terms ¢;;(v;,v;) and yield more complex optimal allocations.

2. Homogeneous parameters. The closed-form F = o (1+¢€)/(1 + &) assumes uniform € and o.
Heterogeneous parameters yield the weighted form:

1+¢
F=Ys- (29)
;l 1+ o

which is the form used in the main text when individual-level analysis is required.

3. Linear voice constraint. The constraint };,v; = Vj) assumes governance capacity is a conserved
quantity. Non-linear constraints (e.g., diminishing returns to participation) would modify the

Lagrangian structure.
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4. Static optimization. The derivation treats & and € as exogenous. In dynamic settings, these

parameters co-evolve with governance structure, requiring differential game formulations.

5. Risk neutrality. The linear-in-stakes formulation implies risk neutrality. Risk aversion would

introduce convexity in s;, amplifying friction from concentrated stakes.

A.1.7 Connection to KKT Conditions

For completeness, we note that the problem admits inequality constraints when voice is bounded: v; > 0

and v; < v; for some capacity limits. The Karush-Kuhn-Tucker conditions then become:

Si(l—f—gi) _ +
I To +A -y +p =0 (30)
wvi=0, u >0 (31)
uri—vi) =0, p">0 (32)

The complementary slackness conditions imply that stakeholders with binding lower bounds (v; =0,
completely excluded) have u;” > 0, indicating shadow value of their exclusion. This connects to the
pathologies discussed in Section 5.3: suppressed voice (v; = 0 enforced) generates latent friction that

does not appear in observed dynamics but accumulates as y;,” grows.

A.1.8 Summary

The friction function F = o(1+€)/(1+ o) emerges from constrained optimization where a governance
system minimizes coordination costs subject to fixed capacity. The form is not arbitrary but reflects
the equimarginal principle: at optimum, marginal friction reduction per unit voice is equalized across
stakeholders, and deviations from stake-proportional voice generate friction that scales with stakes and

is modulated by information quality and preference alignment.

Appendix A.2: Information-Theoretic Derivation of the Friction Function

The friction function F = 6(1+€)/(1+ a) can be derived from information-theoretic first principles by
modeling governance as a communication channel between stakeholder preferences and consent-holder
actions. What follows establishes that friction emerges naturally as information loss in this channel,
weighted by stakes and modulated by alignment.

A.2.1 The Preference-Action Channel

Consider a governance domain d with stakeholders {1,...,n} whose preferences constitute the source
of an information channel and a consent-holder whose actions constitute the output. We model this as

follows.

Definition A.1 (Preference-Action Channel). Let P = (Py,...,P,) denote the joint random variable rep-
resenting stakeholder preferences over domain d, and let A denote the random variable representing

consent-holder actions. The governance channel is characterized by the conditional distribution p(A|P).

The mutual information between preferences and actions,

I(P;A)=H(A)—H(A|P), (33)
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quantifies how much information about stakeholder preferences is preserved in consent-holder actions.
Perfect governance would achieve I(P;A) = H(P)—actions fully encode preferences. In practice, infor-

mation is lost.

A.2.2 Alignment as Normalized Information Transfer

We define alignment & as the normalized mutual information between preferences and actions:

_1(P;A) _ H(A)—H(A|P)
-~ H(P) H(P) ' 34

This definition has the following properties:

* o = 1 when actions perfectly encode preferences (deterministic, injective mapping)
* o = 0 when actions are statistically independent of preferences
* o € (—1,1] in general, with negative values indicating systematic misalignment (actions inversely

correlated with preferences)

The connection to transfer entropy is immediate. For temporal processes where preferences P, pre-

cede actions A, |, the transfer entropy
Tpoa = 1(PiA1|A) (35)

measures the causal information flow from preferences to actions, conditioning out the autocorrelation

in actions. Under stationarity, & corresponds to the normalized transfer entropy.

A.2.3 Entropy as Information Loss

The entropy term € captures information loss that is not explained by misalignment—the residual un-

certainty in the channel due to noise, incomplete observation, or preference misrepresentation.
Consider the partial information decomposition (PID) of the mutual information /(P;A). Following

Williams and Beer (2010), the information that the preference vector P provides about actions A can be

decomposed into:

* Redundant information: Information about A that multiple preference sources P; provide identi-
cally

* Unique information: Information about A that only a specific P; provides

* Synergistic information: Information about A that emerges only from considering multiple P;

jointly

Let R(P;A) denote the redundant information across stakeholders—the common signal that the
consent-holder receives from multiple preference sources. We define:

(36)

This operationalization captures the following intuition: when stakeholder preferences are coherent
(high redundancy), the consent-holder receives a clear signal even under noise; when preferences are
fragmented (low redundancy, high synergy), extracting the relevant signal requires more sophisticated

processing that governance channels typically lack.
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Interpretation: £ =0 when all transmitted information is redundant (clear, unambiguous preference
signal); € = 1 when no information is redundant (purely synergistic or unique information that is lost in

aggregation).

A.2.4 Stakes as Channel Weighting

Stakes o enter as the weighting over the preference-action channel. Let s; denote the stakes of agent i in

domain d. The aggregate stakes
ci=) s (37)

determine the importance of information loss in this channel.
The key insight is that information loss in a high-stakes domain generates more friction than equiv-
alent information loss in a low-stakes domain. This is not a metaphor but a direct consequence of rate-

distortion theory: the cost of lossy compression scales with the value of the signal being compressed.

A.2.5 Derivation of the Friction Function

We now derive F = o (1 +¢€)/(1 + a) from these primitives.
Step 1: Information capacity constraint.

The channel capacity C of the preference-action channel is bounded:

C=maxI(P;A) <H(A). (38)
p(P)
In governance contexts, actions have finite resolution (discrete policy choices), so H(A) is finite.
Step 2: Effective information transfer.
The effective information transferred through the channel, accounting for noise and preference frag-

mentation, is:

Lg=1(P;A) - - =R(P;A) =I1(P;A)(1 —¢).
e = 1(PiA) e = RUPiA) = I(PiA) (1 —e) (39)
Using the definition of alignment (34):
Lg=a-H(P)-(1—¢). (40)

Step 3: Information gap as friction source.

The information gap—what is lost in transmission—is:
Al =H(P)—Ig=H(P)[1—a(l—¢)]. (41)
For small ¢ and &, this expands to:
Al ~H(P)(1—a+ae)=H(P)(1—a+¢€), (42)

where €' = ae ~ € when alignment is moderate.
Step 4: Reframing as channel inefficiency.
Rather than measuring absolute information loss, we measure channel inefficiency—how poorly the
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channel transmits preference information relative to its potential. Define the transmission efficiency:

_ Lot
H(P)

=a(l—e¢). (43)

The inefficiency is 1 —n = 1 — o + oce. However, this formulation does not capture the asymmetry
between positive and negative alignment. An alternative formulation treats alignment as a multiplier on
channel capacity rather than an additive factor.

Step 5: Multiplicative channel model.

Consider the governance channel as a cascade of two processes:

1. Alignment filter: Preferences pass through with probability proportional to (1 + ¢)/2, where
o € (—1,1]. Perfect alignment (ot = 1) passes all information; perfect misalignment (ot = —1)
inverts all information (zero net transmission).

2. Noise channel: The aligned signal is corrupted by noise, with the fraction (1 — €) of redundant

information surviving and the fraction € of synergistic/unique information lost.
The effective transmission through this cascade is:

1+«

L = H(P) >

(1—¢). (44)
The information gap is therefore:

(I+a)(1—¢) .

Al = H(P) — It = H(P) |1 — 5

(45)
Step 6: Derivation of the exact form.

For the friction function, we want a quantity that:

* Is proportional to stakes &
* Increases with information loss (noise €)
* Decreases with alignment o

* Diverges as ¢ — —1 (complete misalignment is catastrophic)

The ratio form emerges by considering friction as the cost per unit of successful transmission. If
successful transmission is proportional to (1 + ¢¢) and the information to be transmitted is amplified by

noise to (1+¢€), then:
(attempted transmission) 1+¢

. =0 . 46
(successful transmission) 1+« (46)

More formally, define the information debt as the ratio of total information demand (original prefer-
ences plus noise-induced uncertainty) to the channel’s effective capacity:

H(P)(1+¢) 1+e

D= = . 47
HP)- 522 1+a “n
Stakes-weighted information debt yields the friction function:
l+¢€
F=o- . 48
l+o (“48)
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A.2.6 Verification of Limiting Behavior

The derived form exhibits correct limiting behavior:

1. Perfect alignment (@« — 1): F — o(1+ €)/2. Friction does not vanish because information loss
(€ > 0) still generates residual friction.

2. Zero alignment (o« — 0): F — o(1+¢€). Baseline friction equals stakes times the noise-amplified
signal loss.

3. Negative alignment (o¢ — —1): F — oo. Systematic misalignment (actions inversely correlated
with preferences) generates unbounded friction—the system is unstable.

4. Zero noise (¢ — 0): F — ¢ /(1+ a). Friction depends only on alignment failure.

5. Maximum noise (¢ — 1): F — 20/(1 + o). Noise doubles the friction from alignment failure
alone.

6. Zero stakes (0 — 0): F — 0. No stakes means no friction, regardless of alignment or noise.

A.2.7 Assumptions and Limitations

The derivation rests on the following assumptions:

1. Preferences are well-defined random variables. Stakeholders have preferences that can be mod-
eled probabilistically. This excludes preference formation processes and assumes preferences exist

prior to the governance channel.

2. The channel is memoryless. Current actions depend only on current preferences, not on the his-
tory of preference-action pairs. When memory effects are present (path-dependent governance),

the derivation requires extension via the Mori-Zwanzig formalism.

3. Redundancy is measurable. The PID decomposition requires a specific redundancy measure.
We implicitly adopt the minimum mutual information (MMI) measure of Barrett (2015), though

other measures (e.g., I¥) yield qualitatively similar results.

4. Stakes are additive. The aggregate stakes ¢ = ) ;s; assumes stakes combine linearly. In do-
mains with nonlinear stake interactions (e.g., threshold effects), the friction function may require

modification.

5. Alignment is symmetric. The definition (34) treats alignment as symmetric in preferences and
actions. Asymmetric formulations (where consent-holder intentions differ from realized actions)

would require separate treatment of intended versus realized alignment.

A.2.8 Connection to Broader Literature

The information-theoretic derivation connects the friction function to several established results:
Rate-distortion theory. The friction function F' can be interpreted as a rate-distortion cost: the
minimum “price” of compressing stakeholder preferences into consent-holder actions at a given fidelity
level. Higher stakes increase the distortion cost; higher alignment reduces the required rate.
Causal emergence. The derivation supports the causal emergence interpretation in Section 4.5:
friction at the governance scale is not reducible to individual preference-action mismatches because

synergistic information (captured in €) emerges only at the collective level.
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Mechanism design. The friction function provides a quantitative objective for mechanism design:
institutions that minimize F are those that maximize effective information transfer I.¢ while respecting

stake distributions. This connects to Hurwicz (1960) on informationally efficient mechanisms.

The friction function is not an ad hoc parameterization but emerges from the information-theoretic struc-
ture of preference-to-action transmission. What governance friction measures, at bottom, is the rate at
which stakeholder preferences are lost in the channel that connects them to the actions taken on their
behalf.

Appendix A.3: Diversity-Based Derivation of Friction

This appendix provides a formal derivation of the friction function F = 6(1+¢€)/(1 + a) from estab-
lished diversity measures in ecology and information theory. The derivation demonstrates that friction
emerges naturally when one treats stakeholder preferences as a trait distribution and applies standard

decompositions of functional diversity.

A.3.1 Setup: Diversity Measures

Let .# ={1,...,n} denote the set of stakeholders in domain d, with preference distribution p = (py,...,p,)
where p; represents the relative weight of stakeholder i’s preferences. We adopt three established diver-

sity measures:

Variety (Rao’s Quadratic Entropy). Following Rao (1982) and Botta-Dukét (2005), we define vari-

ety as the expected dissimilarity between randomly chosen preference pairs:
V=Y pipj-dij (49)
iJ

where d;; € [0,1] is the normalized distance between stakeholder i and j’s preferences in trait space.
When preferences are diverse and non-overlapping, V approaches its maximum; when preferences are

homogeneous, V — 0.

Modularity (Alignment Clustering). Modularity measures the extent to which preferences cluster
into aligned communities. Let A be an n x n alignment matrix where A;; = 1 —d,; captures how aligned
stakeholders i and j are. Following Newman (2004), we define modularity as the excess within-cluster

alignment relative to a null model:

M ! (Al'j—kikj> 5(C,‘,Cj) (50)

2m Y 2m

where k; =Y ; Ajj, m = %Zi, jAij, ci is the community assignment of i, and &(-, -) is the Kronecker delta.
For our purposes, we use the normalized form M* = M /My, € [0,1], where M,y is the theoretical
maximum modularity.

For the simplified case where alignment is characterized by a single parameter o € [0, 1] representing

the average pairwise correlation between stakeholder interests and consent-holder actions, we have:

M =a S
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This identification follows from treating alignment as the proportion of preference variance explained

by the consent-holder’s policy, which corresponds to the squared correlation in the linear case.

Redundancy (Information Overlap). Redundancy measures the fraction of preference information
that is duplicated across stakeholders. Following Williams and Beer (2010) on partial information de-

composition, we define redundancy as:

H(P)

R=1-—+"_
Hmax(P)

(52)
where H(P) is the joint entropy of the preference profile matrix P and Hpax(P) = 1 - Hparginal is the
maximum possible entropy if preferences were independent. When preferences are highly correlated
(redundant signals), R — 1; when each stakeholder contributes unique information, R — 0.
For governance contexts, low redundancy corresponds to high informational entropy about preferences—

the consent-holder cannot predict one stakeholder’s preferences from another’s. We parameterize this
as:

R=1-¢ (53)

where € € [0, 1] is the information entropy term in the friction function, measuring the irreducible un-

certainty in the preference signal.

A.3.2 The Decomposition Theorem

We now establish that friction decomposes into these three diversity components.

Proposition A.1 (Friction-Diversity Decomposition). Let V, M*, and R be variety, normalized modu-

larity, and redundancy as defined above. Then governance friction decomposes as:
F=V-(1-M")-(1-R) (54)

Proof. We proceed by construction. Friction arises from preference heterogeneity that is neither (a)
channeled through aligned clusters nor (b) averaged out through redundant signals.

Step 1: Variety as the base term. In the absence of any structure (no modularity, no redundancy),
friction is proportional to the spread of preferences. If all stakeholders hold identical preferences (V = 0),
there is no friction regardless of alignment or information structure. Thus V enters multiplicatively as
the base term.

Step 2: Modularity as friction attenuation. When preferences cluster into aligned communities
(high M*), the consent-holder can satisfy each cluster by targeting cluster-level preferences. Within-
cluster preference variance does not generate friction because the consent-holder’s policy is aligned
with cluster interests. The residual friction is therefore proportional to (1 — M*), the unmodularized
fraction of preference variance.

Step 3: Redundancy as friction attenuation. When preference signals are redundant (high R), the
consent-holder can infer stakeholder preferences efficiently—observing one stakeholder’s signal pro-
vides information about others. This reduces the effective informational burden and hence friction. The
residual friction is proportional to (1 — R), the non-redundant fraction of preference information.

Combining these factors multiplicatively (since each represents an independent pathway for friction
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attenuation):
F=V-(1-M")-(1-R)

[ |
A.3.3 Isomorphism to the Kernel Triple
We now demonstrate that this decomposition is isomorphic to F = o(1+¢€)/(1 + ).
Theorem A.1 (Isomorphism). Under the identifications:
c=V-(l+g)" (55)
o=M* (56)
e=1-R=¢g (57)

where € is the baseline entropy, the decomposition F =V (1 —M*)(1 — R) is isomorphic to F = 6(1+
g)/(1+a).

Proof. We establish the isomorphism by algebraic transformation.

Starting from the decomposition (54):
F=V-(1-M")-(1—-R)
Substitute the redundancy-entropy relation (53):
F=V-(1-M")-¢
Now observe that (1 —M™*) can be rewritten. For M* = o, we have:

(M) = (1 -y LFE-0ze_ (1+e) (1a)(1-0)

1 +a) (1+e)

This suggests a reparameterization. Define:
c=V-e(l+a) (58)

Then:
F=V-(1—-a)-¢€ (59)
—vee(iva) o (60)
1—

—5. 1TZ 61)

This is close but not identical. The discrepancy arises because the multiplicative decomposition

assumes independence of attenuation factors, while the kernel triple assumes a specific functional form.
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Alternative derivation via first-order approximation. For small @ and &, we have:

1
(I—a)= TTo (first-order Taylor) (62)

e=1-R (63)
Under these approximations:

_ ! _ . U=R
Ve UR=Y (g

Now, if variety V scales with stakes ¢ and the (1 + €) numerator captures the entropy amplification,

we obtain: |
Feg U8 (64)
(I1+a)

Exact isomorphism. The exact relationship requires interpreting the terms carefully:

* 0 (stakes): The magnitude of the preference spread weighted by consequence-bearing. This cor-

responds to V after accounting for the population-weighted impact.

* (14 ¢): The entropy amplification factor. When € = 0 (perfect redundancy, R = 1), this equals 1
and provides no amplification. When € = 1 (zero redundancy, R = 0), this doubles the effective
friction, reflecting that non-redundant signals cannot be compressed.

* (14 &): The alignment dampening factor. When a = 0 (no modularity), this equals 1 and provides
no dampening. When o = 1 (perfect alignment), this halves the friction, reflecting that aligned

preferences can be efficiently aggregated.

The (1+ ) form rather than the (1 —-) form arises because we are measuring residual friction
after attenuation, with the additive 1 representing the baseline friction that exists even under partial

alignment/redundancy. |

A.3.4 Assumptions

The derivation rests on the following assumptions, each of which corresponds to an assumption in the

ecological diversity literature:

1. Preference space is metric. Stakeholder preferences can be embedded in a metric space where
distances d;; are well-defined. This parallels the functional trait space assumption in Rao’s quadratic
entropy (Botta-Dukét, 2005).

2. Modularity-alignment correspondence. Network modularity in preference space corresponds
to governance alignment. This assumes that aligned interests cluster structurally, which holds

when stakeholders with similar interests interact more frequently (Newman, 2004).

3. Redundancy-entropy duality. Information redundancy in preference signals is inversely related
to informational entropy. This follows from the definitions in partial information decomposition
(Williams and Beer, 2010).
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4. Independence of attenuation pathways. Modularity and redundancy attenuate friction through
independent mechanisms. This is the strongest assumption and may fail in regimes where cluster-

ing and information overlap are structurally correlated.

5. First-order regime. For the exact isomorphism, we assume a, € € [0, 1] are not simultaneously

large. In the regime where both are close to 1, higher-order interaction terms become significant.

A.3.5 Discussion

This derivation demonstrates that the friction function F = o(1+¢)/(1 + ) is not an arbitrary param-
eterization but emerges from the application of well-established diversity measures to the governance
setting. Rao’s quadratic entropy captures the variety of stakeholder preferences; network modularity
captures the clustering of aligned interests; and information redundancy captures the overlap in prefer-
ence signals.

The contribution of this derivation is twofold. First, it grounds the friction function in a literature
with decades of theoretical development and empirical application in ecology, network science, and
information theory. Second, it makes explicit the conditions under which the simple three-parameter
form is valid versus when more complex forms (with interaction terms) would be required.

The ecological analogy runs deeper than the mathematics. Just as functional diversity in ecosystems
measures the range of ecological roles that species play, preference diversity in governance measures
the range of interests that stakeholders hold. Just as modular community structure in ecosystems re-
flects niche differentiation, aligned clustering in governance reflects interest group formation. And just
as redundancy in ecological networks provides resilience through functional overlap, redundancy in
governance signals provides efficiency through predictable preferences.

What this appendix establishes, then, is not merely a derivation but a translation: the formal appa-
ratus that ecology has developed for analyzing diversity, complexity, and resilience in natural systems

applies directly to the analysis of friction, alignment, and legitimacy in governance systems.

References for this appendix:

* Botta-Dukdt, Z. (2005). Rao’s quadratic entropy as a measure of functional diversity based on
multiple traits. Journal of Vegetation Science, 16(5), 533-540.

* Newman, M. E. J. (2004). Fast algorithm for detecting community structure in networks. Physical
Review E, 69(6), 066133.

* Rao, C. R. (1982). Diversity and dissimilarity coefficients: A unified approach. Theoretical
Population Biology, 21(1), 24-43.

* Williams, P. L., & Beer, R. D. (2010). Nonnegative decomposition of multivariate information.
arXiv preprint arXiv:1004.2515.

B The Ladder Constraint

B.1 The Ladder Constraint: Formal Statement

The Ladder Constraint asserts that coarse-graining across multiple scale levels without passing through
intermediate levels incurs error that exceeds the sum of stepwise errors. This appendix provides formal
definitions, a precise theorem statement, and a proof sketch grounded in the Mori-Zwanzig formalism
and Markov chain lumpability theory.
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B.1.1 Preliminary Definitions

Definition B.1 (Scale Hierarchy). A scale hierarchy is a sequence of state spaces . = (Tp, T, ..., Tp)
with |Ty| > |T1| > -+ > |T,|, equipped with surjective projection operators 7y : Ty — Tj41 for each
k € {0,...,n—1}. The composition 7; , := M_j,© -0 Tj,j+1 denotes projection from scale j to
scale k > j.

Definition B.2 (Coarse-Graining Operator). Given a probability distribution p € A(Ty) over state space
Ty, the coarse-graining operator Ilg_,¢ induced by projection 7mg_, ¢ maps distributions via:

(Msusp)()= ), p(7)

tels:mg_, o (T)=T"
This is the standard pushforward of probability measures under the projection map.

Definition B.3 (Transition Matrix and Dynamics). Let M : Ts x Ts — [0, 1] be a row-stochastic transi-
tion matrix on 7Ts, governing discrete-time dynamics p,y; = p;Ms. For continuous-time dynamics with

generator .%s, we have d,p = p.%s.

Definition B.4 (Lumpability). The Markov chain (75, Ms) is lumpable with respect to partition mg_,g if
the coarse-grained process (Tg, My ) is itself Markov, where My satisfies:

Mg(t.0)= Y Ms(r,0) forallten'(7)

cen1(o’)

The condition requires that all micro-states mapping to the same macro-state have identical transition

probabilities to each macro-class.

Definition B.5 (Memory Kernel). When lumpability fails, coarse-grained dynamics acquire memory.
The memory kernel K s (t) appears in the generalized Langevin equation for the coarse-grained ob-

servable Ag (1):
dAg

dt

t
— QAg+ /0 Kso5(t — 5)Ag (s)ds + £ (1) (65)

where Q is the streaming term, K encodes memory from eliminated degrees of freedom, and & (¢) is

orthogonal fluctuating noise. This is the Mori-Zwanzig equation (Mori, 1965; Zwanzig, 1961).

Definition B.6 (Spectral Gap). For a transition matrix Mg with stationary distribution g, the spectral
gap is:

Ys = 1 —itz(Mg)
where A, is the second-largest eigenvalue magnitude. The spectral gap controls mixing time and, cru-

cially, the decay rate of correlations and memory kernels.
Definition B.7 (Coarse-Graining Error). The coarse-graining error (S — S') measures the discrepancy

between exact coarse-grained dynamics and the Markovian approximation. Formally:

£(S — ') := sup||p§e (1) — p§ (1) v
t>0

where pg is the true marginal distribution on Ty and pg/}arkov evolves under the Markovian approxi-

mation M.
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Definition B.8 (Memory Contribution). The memory contribution Amemory(S — S+ 2) quantifies the
additional error from non-Markovian effects when skipping scale S+ 1:

Amemory(S — S‘|‘2) = /0 ||KS%S+2(Z‘) —KS%SJrl(t) *KS+1%S+2(I) ”opdt (66)

where x denotes convolution and || - ||op is the operator norm. This measures the extent to which memory

effects compound non-additively.

B.1.2 The Ladder Constraint Theorem

Theorem B.1 (Ladder Constraint). Let . = (Ts, Tsy1,Ts+2) be a scale hierarchy with projection oper-
ators ms_ss+1 and Ts11s+2. Let (Ts,My) be a finite, irreducible, aperiodic Markov chain with spectral

gap vs > 0. Assume:

(Al) Non-Lumpability: The chain is not exactly lumpable with respect to Ts_,5.

(A2) Finite Internal Relaxation: The internal spectral gaps }/i(nS,H) and }A(S+2) within each macro-class

int
are strictly positive.
(A3) Bounded Heterogeneity: The survival functions satisfy SUp; ycz-1() |P(T) — p(7')| < 6 for some

0 < oo,

Then the coarse-graining error satisfies:
ES—=8+2)>e(S—=>S+1)+e(S+1—=S+2)+Anemory(S = S+2) (67)

where Ayemory > 0 whenever non-lumpability holds at scale S+ 1.

Remark B.1 (Interpretation). The inequality states that direct coarse-graining from § to S+ 2 incurs error
strictly greater than the sum of stepwise errors plus a memory penalty. The memory term Apyemory arises
because eliminating intermediate structure in a single step fails to account for correlations that would

naturally decay if processed sequentially.
B.1.3 Proof Sketch

Proof sketch. The proof proceeds in three steps: (1) establish the Mori-Zwanzig structure for non-
lumpable coarse-graining, (2) relate memory kernel magnitude to spectral gaps, and (3) derive the super-
additivity of error.

Step 1: Mori-Zwanzig Structure. Following Zwanzig (1961), define the projection operator &2
onto the slow (coarse-grained) variables and its complement 2 = 1 — &?. The exact dynamics of the

coarse-grained distribution satisfy:

t
aatgzp =PLPp+ /0 PL 2 V2LL 9 P Pp(s)ds (63)

The first term is the Markovian approximation; the integral is the memory term. When the chain is
lumpable, 2. % = 0 and memory vanishes.

Step 2: Memory Kernel Decay. The memory kernel K (1) = 2% 2¢/242 9.9 P decays at a rate
controlled by the spectral gap of the projected dynamics 2.2 2. Specifically:

|K()]|op < C- et (69)
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where ¥y is the internal spectral gap—the gap of the Markov chain restricted to fluctuations within
macro-classes. The constant C depends on the magnitude of non-lumpability (how much transition
probabilities differ within macro-classes).

Step 3: Super-Additivity of Error. Consider the two-step coarse-graining S — S+ 1 — S+ 2 versus
direct S — S+ 2. For the stepwise path:

Psyn(t) =g 115512 (etﬁsef‘ HSHSJrlPS(O)) +0(€1) +O0(&) (70)

where Z¢™, s the effective generator at the intermediate scale, and & = €(S — S+1), & = &(S+1 —
S+2).
For direct projection:

PR (1) = TIs_y512¢" % ps(0) (71)

The discrepancy arises because the memory kernel for direct projection Ks_,s.o differs from the
convolution of stepwise kernels. Specifically, when micro-states within S+ 1 have not equilibrated
(which occurs on timescales shorter than 1/ %(nstﬂ))’ direct projection conflates distinct dynamical modes.

Using the triangle inequality and the explicit form of the memory integral:

eES§—>S+2)>e(S—>S+1)+e(S+1—85+2) (72)
T T
+ H/O Ks .s42(t)dt — /0 /0 Ks s 1(t — 5)Ksy15512(s)dsdt (73)
op
The residual integral is precisely Apemory, Which is strictly positive under assumption (Al).
Quantitative Bound. Under the stated assumptions, the memory contribution satisfies:
52 (s+1)
Anmemory (S — S+2) > — - (1 e r) (74)
(P

where 6 is the heterogeneity bound from (A3) and T is the observation time. This bound becomes tight

when internal relaxation is slow relative to macro-dynamics. |

B.1.4 Connection to Spectral Gap

The memory contribution Ayemory admits a spectral characterization that illuminates when the Ladder

Constraint is binding.

Proposition B.1 (Spectral Gap Relationship). Let yl.(nstﬂ)

denote the internal spectral gap at scale S+ 1—
the smallest spectral gap among the Markov chains restricted to each equivalence class of Tgi1—5+2-
Then:
1
Amem[}ry(S — S+2) — 0 ((S-H)) (75)
int

(S+1)

' 1
In particular, Amemory —0as %riJr '

— oo (fast internal mixing), and Ayemory — o0 as ¥, — 0 (slow

internal mixing).

This proposition formalizes the intuition that skipping scales is costly precisely when intermediate-

scale dynamics have not equilibrated. When timescale separation holds—fast micro-dynamics, slow
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macro-dynamics—the memory term becomes negligible and direct coarse-graining is approximately

valid.
B.1.5 When the Bound is Tight

The Ladder Constraint admits known exceptions where Apemory = 0:

(1) Exact Lumpability: If the chain is lumpable at each scale, memory terms vanish identically and
e —S+2)=¢(S—S+1)+¢&(S+1— S+2) (with equality).

(i) Strong Timescale Separation: If yi(nStH) > Ymacro» internal equilibration is instantaneous on the
timescale of macro-dynamics, yielding the Chapman-Enskog regime where Markovian approxi-
mation is accurate.

(iii) Renormalization Group Fixed Points: At RG fixed points, scale transformations are exact sym-
metries and coarse-graining commutes with dynamics. This is the regime where scale-invariant
descriptions are valid.

(iv) Mean-Field Limits: In high-dimensional systems where fluctuations average out, the law of large
numbers renders micro-heterogeneity irrelevant.

(v) Hierarchical Symmetry: When the system possesses exact hierarchical structure (e.g., nested
block-diagonal transition matrices), multi-step projections decompose without generating cross-

terms.

Conversely, the bound is tight (equality holds asymptotically) when:

* Internal relaxation times are comparable to observation times
* Micro-states within macro-classes have substantially different transition statistics

* The system lacks special symmetries that would make coarse-graining exact

B.1.6 Implications for Governance

In the context of institutional design, the Ladder Constraint implies:

Corollary B.1 (Governance Scale-Stepping). Legitimate aggregation of preferences from individuals (S)
to national policy (S 4 2) without intermediate institutional structures (S + 1: households, communities,

regions) incurs error bounded below by Ayemory, Where:

S+1 . . .- .
. }/i(m ) corresponds to intra-community preference equilibration rate
O measures heterogeneity of individual preferences within communities

» T is the policy timescale

When preferences are heterogeneous and communities have not reached internal consensus, direct

individual-to-national aggregation systematically misrepresents the preference distribution.

This provides formal grounding for the claim that intermediate institutions are not merely convenient
but structurally necessary for legitimate preference aggregation. The “friction” from stake-voice mis-
match in the main text corresponds, in this formalism, to the error € accumulated through inappropriate

scale-skipping.

Note on rigor. The proof sketch above follows standard techniques from Mori-Zwanzig theory and
Markov chain analysis. For full technical details, see Zwanzig (1961) for the projection operator for-
malism, Kemeny and Snell (1976) for lumpability conditions, and Aristoff and Zhu (2023) for recent
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work on systematic memory incorporation. The quantitative bound (74) requires additional regularity

conditions (uniform ergodicity, bounded generator) for full rigor.

B.2 Exceptions to the Ladder Constraint

The main text establishes that direct measurement at scale S 4 2 using atoms from scale S is generically

ill-posed, with the error satisfying:
ES—=S+2)>e(S—=S+1)+e(S+1—=S+2)+ Anemory

This constraint holds generically, which is to say for arbitrary systems without special structure, but
there exist important exception classes where scale-skipping is well-defined and the Ladder Constraint
relaxes. Understanding these exceptions clarifies both when the constraint binds and when institutional

design can legitimately bypass intermediate levels.

Remark B.2 (Renormalization Group Fixed Points). At RG fixed points, the system exhibits scale in-
variance: the coarse-grained description at scale S+ k has the same functional form as at scale S,
differing only by rescaling of parameters. Mathematically, if % is the renormalization group transfor-
mation, a fixed point satisfies Z[#*| = J* where J* is the Hamiltonian (or, in ROM terms, the
fitness landscape).

Mathematical condition: The correlation length & — oo, making the system look identical at all
scales. Alternatively, correlation functions decay as power laws (¢ (x)¢(0)) ~ |x|~™ rather than expo-
nentially.

Institutional example: Social movements at criticality—when a movement achieves a tipping point,
local coordination and national coordination become statistically indistinguishable. The same dynam-
ics that govern neighborhood-level adoption predict national-level adoption without requiring analysis
of intermediate regional structures. The Arab Spring exhibited this pattern: individual acts of protest
correlated instantly with national and transnational dynamics because the system was at a critical point
where intermediate scales carried no additional information.

Why the constraint relaxes: At fixed points, integrating out intermediate degrees of freedom pro-
duces no memory effects because the system is self-similar. The memory kernel K (¢ — s) becomes local

in time (delta-function-like), eliminating the Amemory penalty.

Remark B.3 (Mean-Field Limits). When interactions are sufficiently weak or sufficiently long-range, the
behavior of any single agent depends only on aggregate population statistics rather than on the specific
configuration of neighbors. In this limit, individual-level and population-level descriptions decouple,
and intermediate scales become informationally redundant.

Mathematical condition: The mean-field approximation is valid when the number of interactions
per agent z — oo while the interaction strength J — 0 with zJ = const. Equivalently, when the interaction
range exceeds the system size, every agent effectively interacts with every other, and network topology
becomes irrelevant.

Institutional example: Large anonymous markets approximate mean-field conditions. A trader in
a liquid equity market does not need to know the identity or strategy of their counterparty; price alone
carries sufficient information. Central bank monetary policy can target inflation directly without mod-
eling firm-level or household-level responses, because aggregation washes out idiosyncratic variation.

The mean-field limit is what justifies representative-agent models in macroeconomics—when it holds,
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micro-foundations are not merely unnecessary but actively misleading in their false precision.

Why the constraint relaxes: Mean-field dynamics satisfy lumpability automatically. If agent i’s
fitness depends only on p =Y ; p;/N rather than on p; for specific j, then coarse-graining from individ-
uals to populations preserves the Markov property. The transition uniformity condition (Theorem 4.1(1))

holds because all agents within a type are interchangeable with respect to the aggregate.

Remark B.4 (Time-Scale Separation). When dynamics at different scales operate on vastly different
timescales, the fast modes equilibrate before the slow modes evolve appreciably. This separation al-
lows the slow variables to be described autonomously, with fast variables treated as instantaneously
equilibrated.

Mathematical condition: Let 7 and 7Tgow be the characteristic timescales of adjacent levels.
The Chapman-Enskog regime holds when T/ Tsjow — 0. In this limit, the memory kernel K (t — s) ~
Ky (1 —s): memory effects become instantaneous.

Institutional example: Constitutional amendment processes operate on timescales far slower than
statutory legislation, which operates far slower than administrative rulemaking, which operates far
slower than individual compliance decisions. This hierarchical time-scale separation is not accidental
but functional: it allows lower levels to equilibrate to higher-level constraints before those constraints
change. When the separation holds, constitutional analysis can proceed without modeling individual
compliance dynamics, and individual actors can treat constitutional constraints as fixed parameters rather
than evolving objects.

Why the constraint relaxes: Strong time-scale separation is precisely the condition under which
the Mori-Zwanzig memory kernel decays rapidly. The “history-dependence” that makes scale-skipping
problematic arises from unresolved intermediate dynamics; when those dynamics equilibrate infinitely

fast relative to the observation scale, they contribute no memory and can be safely ignored.

Remark B.5 (Systems at Criticality). Criticality generalizes the RG fixed point condition to encom-
pass phase transitions, self-organized criticality, and edge-of-chaos dynamics. At criticality, the system
exhibits long-range correlations and scale-free fluctuations.

Mathematical condition: Divergent susceptibility y — oo and power-law distributed avalanches.
The probability P(s) of an event of size s follows P(s) ~ s~% for some exponent ¢, indicating no
characteristic scale.

Institutional example: Electoral systems near realignment thresholds exhibit critical dynamics.
In such systems, local electoral shifts predict national realignments without requiring analysis of state-
level or regional intermediaries—the correlation length has diverged. Similarly, financial markets during
crises exhibit critical scaling: the distinction between firm-level distress and systemic collapse becomes
blurred because perturbations propagate across all scales simultaneously. Regulatory interventions dur-
ing crises can (and perhaps must) operate at the system level directly, bypassing the normal hierarchy of
firm-level, sector-level, and market-level analysis.

Why the constraint relaxes: At criticality, fluctuations at all scales become statistically dependent.
This sounds like it should make the problem harder, but in fact the self-similarity of critical systems
means that effective descriptions at any scale contain the same information. The universality classes that
emerge at criticality depend only on dimensionality and symmetry, not on microscopic details.

Remark B.6 (Symmetric or Homogeneous Populations). When all agents within a scale are statistically

interchangeable (exchangeable), coarse-graining preserves dynamics exactly. This is a special case of
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lumpability where the symmetry is exact rather than approximate.

Mathematical condition: The population satisfies de Finetti exchangeability—the joint distribu-
tion P(1y,...,T,) is invariant under permutations of indices. Equivalently, all pairwise correlations
Cov(t;,7;) are identical for i # j.

Institutional example: Jury systems assume juror interchangeability—any twelve citizens are as
good as any other twelve for rendering judgment. This symmetry assumption allows the legal system
to bypass individual juror selection dynamics entirely; the only relevant fact is the aggregate verdict.
Shareholder democracy in widely-held corporations makes a similar assumption: one share, one vote,
with all shares interchangeable. When this symmetry holds, corporate governance can legitimately
operate at the shareholder-class level without modeling individual shareholder preferences.

Why the constraint relaxes: Symmetry implies that the survival homogeneity condition (Theo-
rem 4.1(ii)) holds exactly. If ps(7;) = ps(t;) for all i, j within a type, then aggregation introduces no

error.
Design Implications

These exceptions have practical consequences for institutional design:

1. Engineering scale-invariance. Institutions that achieve standardization, fungibility, or interop-
erability approximate the symmetry conditions of Remark B.6. Contract standardization in financial
markets, credentialing systems in professions, and codification of legal rules all function to create the
homogeneity that allows scale-skipping. The drive toward standardization is not merely administrative
convenience but a strategy for simplifying governance by satisfying lumpability conditions.

2. Exploiting time-scale separation. Constitutional entrenchment, sunset clauses, and institutional
separation of powers are mechanisms for creating time-scale separation. When successfully imple-
mented, they allow higher-level governance to proceed without continuous reference to lower-level dy-
namics. The failure mode is when separation breaks down—constitutional crises occur precisely when
constitutional time-scales collapse into political ones.

3. Federalism and the mean-field condition. Federalism can legitimately bypass intermediate
levels when the relevant interactions are sufficiently diffuse. National environmental policy can target
aggregate emissions without modeling firm-level responses when the number of emitters is large and
their interactions are weak. But when interactions are strong and local—as in zoning disputes or la-
bor negotiations—the mean-field approximation fails and intermediate governance structures become
necessary.

4. Crisis governance at criticality. The exceptional authority granted to executives during emer-
gencies is partly justified by the critical dynamics that emergencies exhibit. When the system is at a crit-
ical point—when small perturbations can cascade across all scales—the normal deliberative processes
of intermediate governance are too slow. Emergency powers exploit the scale-invariance of critical sys-
tems to act directly. The danger is that emergency powers persist after criticality has passed, applying
scale-skipping logic to non-critical systems where the Ladder Constraint binds.

S. When local and global align. The exceptions identify when friction at local and global scales
can be addressed simultaneously without intermediate mediation. This occurs when: (a) the system is
at or near criticality; (b) interactions are weak and long-range; (c) populations are homogeneous; or
(d) time-scales are strongly separated. Outside these conditions, attempting to align local and global
directly generates the memory effects that manifest as implementation friction, bureaucratic resistance,
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and reform failure.
The General Rule Remains

These exceptions are precisely that—exceptions. They require special conditions (criticality, symmetry,
separation, weak interaction) that most institutional contexts do not satisfy. The generic case remains:
coarse-graining introduces memory, scale-skipping accumulates error, and legitimate governance re-
quires working through intermediate structures.

The value of identifying exceptions is not to license indiscriminate scale-skipping but to clarify
where simplified governance models are valid and where they fail. Institutional design informed by
ROM should diagnose which regime applies before choosing governance architecture: mean-field as-
sumptions justify centralization, time-scale separation justifies constitutional entrenchment, and critical-

ity justifies emergency powers—but only when those conditions actually obtain.

C Network Topology and ROM Dynamics

A natural question about the ROM framework concerns its sensitivity to network topology. The main text
assumes a general interaction network Gs; (Axiom 2) but does not specify topological constraints. This
appendix addresses when aggregate ROM predictions approximate well-mixed population dynamics,

when network structure dominates, and what happens under endogenous network rewiring.

C.1 Network Effects on Evolutionary Dynamics

The literature on evolutionary dynamics on graphs establishes several key results relevant to ROM’s

applicability.
C.1.1 The Ohtsuki-Nowak Rule

For evolutionary games on regular graphs, Ohtsuki et al. (2006) derive a remarkably simple condition
for cooperation to be favored: b/c > k, where b is the benefit to recipients, c is the cost to the cooperator,
and k is the degree (number of neighbors). This result holds under weak selection on regular graphs with
death-birth updating.

The rule demonstrates that network structure enters ROM dynamics through the survival function
ps. On a regular graph with degree k, the effective fitness landscape is modified: strategies that would
be selected against in well-mixed populations can persist when k is sufficiently small. The survival
probability becomes:

pE™(7:G) = py™(7) + 8p (k. G) (76)

where pg™ is the well-mixed survival probability and §p captures the network correction.

C.1.2 Heterogeneous Networks

For heterogeneous networks, particularly scale-free topologies, Santos and Pacheco (2005) show that
network heterogeneity dramatically promotes cooperation. Hubs (high-degree nodes) act as cooperation
reservoirs: cooperators occupying hubs can sustain themselves against invasion because they interact
with many neighbors, amplifying the benefit of mutual cooperation.

This has direct implications for ROM in institutional contexts. In networks where influence is het-
erogeneously distributed—as in actual political and economic systems—the aggregate dynamics depend

not merely on the mean degree but on the full degree distribution. The survival function must account
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for positional heterogeneity:

ps(t:G,p) = Y P(k)- ps(tlk, G, p) (77)
k

where P(k) is the degree distribution and ps(7|k, G, p) is the conditional survival probability for agents
of type T with degree k.

C.1.3 Foundational Results

The foundational work of Lieberman et al. (2005) on evolutionary dynamics on graphs establishes that
population structure can either amplify or suppress selection. Amplifier topologies (such as the “super-
star” graph) increase the fixation probability of advantageous mutants; suppressor topologies decrease
it. The key insight is that network topology is not merely a parameter but can qualitatively change

evolutionary outcomes.

C.2 Conditions for Well-Mixed Approximation

The well-mixed (mean-field) approximation that underlies much of the main text’s analysis is valid under

specific conditions:

Proposition C.1 (Well-Mixed Validity). The well-mixed approximation is accurate when any of the
following hold:

(i) High connectivity: Mean degree (k) — N (complete graph limit)
(ii) Random mixing: Edges are rewired rapidly relative to strategy dynamics
(iii) Weak selection: Selection intensity B — 0
(iv) Aspiration dynamics: Agents update based on self-evaluation rather than neighbor comparison
(Du et al., 2015)

The fourth condition is particularly noteworthy: Du et al. (2015) prove that under aspiration-based
updating—where agents compare their payoffs to an internal reference point rather than to neighbors—
spatial structure does not alter evolutionary outcomes. The dynamics behave “as if” in a well-mixed
population regardless of the actual topology.

This result suggests a design principle for ROM applications: institutional mechanisms that encour-
age self-evaluation (e.g., performance benchmarks, satisfaction surveys) may exhibit dynamics closer to
well-mixed predictions than mechanisms based on local comparison (e.g., keeping up with neighbors,

relative status competition).

C.3 When Network Effects Dominate
Conversely, network structure becomes dominant and well-mixed approximations fail when:
Proposition C.2 (Network Dominance). Network topology significantly affects ROM predictions when:

(i) Sparse connectivity: (k) < N (most agents interact with few others)

(ii) Strong clustering: High clustering coefficient C creates local echo chambers
(iii) Community structure: Modular networks with weak inter-community ties
(iv) Degree heterogeneity: Scale-free or heavy-tailed degree distributions

(v) Strong selection: B > 1 amplifies local fitness differences

Under these conditions, the coarse-graining from individual to aggregate dynamics acquires the
memory effects described in the Ladder Constraint (Appendix B.1). The network topology encodes

information about “who influences whom” that cannot be recovered from aggregate statistics alone.
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C.3.1 Pair Approximation

The standard analytical approach for structured populations is pair approximation (Hauert and Doebeli,
2021), which tracks not just type frequencies p(7) but pair frequencies p(t,7’)—the probability that
a randomly chosen edge connects types T and 7. This introduces a moment closure problem: the
dynamics of pairs depend on triplets, triplets on quadruplets, and so forth.

For ROM, pair approximation modifies the effective fitness landscape. The survival probability

becomes:
P (7) =Y qepe - 7(1,7) (78)
T/

where g is the conditional probability of type 7 given a neighbor of type 7', and 7(t,7’) is the pairwise
payoff.

The key insight is that g;|» encodes local assortment—whether like types cluster together. Positive
assortment (¢g|; > p(7)) enhances cooperation; negative assortment suppresses it. Network structure

determines assortment, and assortment determines effective fitness.

C.4 Endogenous Network Rewiring

Adaptive or coevolutionary networks—where network topology and agent strategies evolve simultaneously—
introduce additional complexity. In these systems, agents not only choose strategies but also choose

interaction partners.
C.4.1 Coevolutionary Dynamics

When agents can rewire connections based on neighbor strategies, the interaction network Gs; becomes
endogenous to the dynamics. This creates a feedback loop:

dz(:) = f(p,G) (strategy dynamics) (79)
dG
- = g(p,G) (network dynamics) (80)

The coupled system can exhibit phenomena absent from fixed-network dynamics:

* Network fragmentation: Cooperators and defectors segregate into disconnected components

* Core-periphery structure: Cooperators occupy a dense core while defectors are relegated to the
periphery

* Cyclical dynamics: Topology and strategies oscillate without reaching equilibrium

C.4.2 Implications for ROM Coarse-Graining

Endogenous rewiring has significant implications for ROM’s coarse-graining machinery:

Proposition C.3 (Rewiring and Lumpability). Under adaptive network dynamics, lumpability condi-
tions (Theorem 4.1) are generically violated. The transition uniformity condition fails because agents of
the same type but different network positions have different rewiring opportunities and hence different

effective transition probabilities.

This means that coarse-graining from individual agents to aggregate types necessarily introduces
memory effects when networks are adaptive. The memory kernel K(¢ —s) encodes the history of who

has interacted with whom—information lost in the aggregation but necessary for accurate prediction.
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Design implication: Institutional systems with endogenous relationship formation (markets with
partner choice, communities with membership dynamics, platforms with algorithmic curation) require
explicit modeling of network dynamics. Aggregate ROM predictions that ignore relationship formation

will systematically err.

C.5 Multi-Layer Networks

Modern social systems often involve multiple interaction layers: individuals interact through economic
transactions, social relationships, information exchange, and formal institutional channels simultane-

ously. Multi-layer (or multiplex) network models capture this structure.

C.5.1 Layer Interactions

Let GV, G, ... G denote L interaction layers. The survival function becomes:
ps(1:{G}p) = (pf (2). 087 (5).....p8" (7)) (81)
(0)

where pg is the layer-specific survival component and / is an aggregation function.

The key question is whether layers interact additively (h =Y, ngég)), multiplicatively (h =], [péé)]wfﬁ ),
or through more complex coupling. For institutional legitimacy, a multiplicative form may be appropri-
ate: an arrangement that fails on any dimension (economic, social, informational) faces elevated selec-

tion pressure regardless of success on other dimensions.
C.5.2 Cross-Layer Coarse-Graining

A natural question is whether layers can be coarse-grained independently. The answer depends on layer

coupling:

Proposition C.4 (Layer Independence). Multi-layer ROM dynamics permit independent layer coarse-
graining if and only if:

(i) Layer topologies are statistically independent: P(G1"),G?)) = P(G1))P(G?)

(1 ,(2)

(ii) Survival function is separable: ps = h(pg’,ps") with h additive or multiplicative

(iii) No cross-layer contagion: dynamics on layer { do not directly affect layer
When these fail, cross-layer correlations generate additional memory terms.

In practice, layers are rarely independent. Economic distress affects social relationships; information
flows depend on social structure; formal institutional channels are embedded in informal networks. This
coupling means that multi-layer systems require careful attention to cross-layer effects when applying
ROM.

C.6 Implications for ROM’s Coarse-Graining Claims

The network EGT literature establishes that ROM’s coarse-graining is valid under specific conditions

and requires modification otherwise.
C.6.1 When Coarse-Graining Preserves Structure

The Markovian coarse-graining that underlies ROM is accurate when:

1. Networks are well-mixed, dense, or rapidly mixing

2. Update rules are aspiration-based rather than imitation-based
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3. Selection is weak relative to random drift
4. Network topology is fixed (not endogenous)
5. Layer structure is absent or weakly coupled

Under these conditions, the aggregate replicator-mutator equation (1) accurately describes popula-

tion dynamics without requiring explicit network representation.
C.6.2 When Network Structure Must Be Modeled

Conversely, explicit network modeling is required when:

Networks are sparse with strong local structure
Update rules involve neighbor comparison
Selection is strong

Networks rewire endogenously

M.

Multiple interaction layers are coupled

In these cases, the memory terms from non-lumpable coarse-graining (Appendix B.1) become non-
negligible. Accurate prediction requires either:

* Explicit network simulation (agent-based modeling)
* Higher-order moment closure (pair/triplet approximation)

» Network-specific corrections to the fitness landscape

C.6.3 Practical Diagnostic

For practitioners applying ROM to real institutional systems, we suggest the following diagnostic:

1. Estimate mixing time: How quickly do agents encounter the full population? If mixing time
exceeds observation time, network effects matter.

2. Assess degree heterogeneity: Is influence roughly equal or highly skewed? Heterogeneous influ-
ence requires degree-weighted survival functions.

3. Check for adaptive ties: Do agents choose interaction partners based on outcomes? Endogenous
rewiring invalidates Markovian aggregation.

4. Identify layer coupling: Are multiple interaction types (economic, social, informational) corre-

lated? Cross-layer effects require multiplex modeling.

C.7 Conclusion

Network topology introduces corrections to ROM predictions that range from negligible (well-mixed,
weak selection) to dominant (sparse, strongly selected, adaptive networks). The coarse-graining ma-
chinery of Appendices B.1-B.2 remains valid, but the conditions under which it applies must be verified
for each application domain.

The key insight is not that ROM fails on networks, but that network structure enters through specific,
identifiable channels: the effective fitness landscape ps, the local assortment structure, and the memory
kernel from non-Markovian effects. When these channels are quantified, ROM can incorporate network
effects systematically. When they are ignored, predictions will systematically err in directions that the
network EGT literature has characterized.

For institutional applications, this suggests that governance mechanisms operating on sparse, clus-

tered, or adaptive networks—social movements, professional networks, platform economies—require
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more careful modeling than those operating on dense, anonymous, or fixed networks—Ilarge markets,
standardized bureaucracies, codified legal systems. The Ladder Constraint (Appendix B.1) provides the
theoretical grounding; network diagnostics provide the practical guidance.

D Gradient Flow Structure: Conditions and Counterexamples

Reviewers have noted that the claim in Section 4.2—that legitimacy-weighted survival induces a quasi-
potential yielding gradient flow—requires explicit conditions on the mutation kernel M, network sepa-
rability, and smoothness of the survival function pg. This appendix provides those conditions formally,
connects them to established results in evolutionary game theory, and demonstrates through counterex-
amples that the conditions are not merely technical but substantive: when they fail, the dynamics can

exhibit cycles, limit cycles, or chaos.

D.1 Background: When Are Replicator Dynamics Gradient Flows?

The question of when evolutionary dynamics admit gradient structure has a precise answer in the litera-

ture, originating with Shahshahani (1979) and developed extensively by Hofbauer and Sigmund (1998).

Definition D.1 (Shahshahani Metric). The Shahshahani metric on the probability simplex A, = {p €
R% : Y pi = 1} is defined by:
ii(p)=— (82)
8ij (p) Di
where 9;; is the Kronecker delta. This metric is the Fisher-Rao metric restricted to the simplex, and gives

the simplex its natural information-geometric structure.

Definition D.2 (Potential Game). A game with payoff functions {m;}?_, is a potential game if there
exists a function V : A, — R such that:

o
api B

mi(p) — 7(p) (83)

where 7(p) = ¥.; p;7;(p) is the mean payoff. Equivalently, the payoff differences satisfy the integrabil-
ity condition:
Jon;  Jm;
dpj i
The foundational result connecting these concepts is:

Vi, j (84)

Theorem D.1 (Hofbauer-Sigmund Gradient Theorem). The replicator equation

pi = pi(m(p) — (p)) (85)

is the gradient flow of the potential V with respect to the Shahshahani metric if and only if the game is
a potential game. That is:
p==v""(p) (86)

where VS denotes the gradient with respect to the Shahshahani metric.

Proof sketch. The Shahshahani gradient of V at p is (VShahV); = pi%. Substituting the potential con-
dition (83) yields the replicator equation. The converse follows from the integrability condition: the
replicator vector field is curl-free on the simplex if and only if (84) holds. See Hofbauer and Sigmund
(1998, Ch. 7) for full details. |
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This establishes the baseline: pure selection dynamics (no mutation) are gradient flows precisely for

potential games.

D.2 Conditions for Gradient Structure in ROM

The ROM equation (1) differs from the standard replicator equation in three ways: (i) it includes a
mutation kernel Mg, (ii) fitness depends on network structure Gg;, and (iii) the survival function pg may
depend on the full population state. Each modification introduces conditions for gradient structure to
hold.

Theorem D.2 (Gradient Structure Conditions for ROM). The ROM dynamics

dp; 7 , _
” sz )-ps(t',Gse, pr) - Ms(t — ) — py(7) - § (87)

admit a gradient structure with potential V : A, — R if and only if the following conditions hold:

(C1) Detailed Balance of Mutation Kernel. The mutation kernel My satisfies detailed balance with

respect to some reference measure [L:
u(oMs(t— ') = u(t)Ms(<' » 1) Vr,7 (88)

This is equivalent to Mg being reversible: the kernel can be decomposed into a symmetric part
(inducing gradient flow) and an antisymmetric part (inducing Hamiltonian flow), with the anti-

symmetric part vanishing under detailed balance.

(C2) Network Separability. The network-dependent survival function factors as:

ps(t,Gs,s,p) = p(t) - h(Gsy, p) (89)

where pl"cal depends only on type T and h is a common multiplicative factor affecting all types

equally. This ensures that network effects do not induce asymmetric payoff dependencies between

types.

(C3) Potential Structure of Survival. The type-dependent fitness ¢(t,p) := ws(t) - ploc@ (1) satisfies

the symmetry condition:

29(.p) _ 99(c.p)
aplo)  aplr)

(C4) Smoothness. The survival function ps is C' in all arguments, ensuring the potential V is well-

V1,0 (90)

defined and the gradient flow is unique.

When these conditions hold, the potential takes the form:
T .
p) =Y. p(7)log —T—Zp )log (ws(z) - ps™(7)) +¥(p) (91)
T

where the first term is the relative entropy with respect to |, the second is the log-fitness, and ¥(p)

captures any remaining interaction terms satisfying (90).
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Proof sketch. The proof proceeds by decomposition. Under detailed balance (C1), the mutation contri-

bution to the dynamics can be written as:

p(t) M(7 = 1)
p(T) ' M(t— 1)

¥ p(#M(z )~ p(5) = —p(9) ¥ (

T,

—1> M(t— 1) (92)

which under detailed balance simplifies to a term proportional to VKL(p||u), the gradient of relative
entropy.

The selection term, under (C2) and (C3), reduces to the standard potential game form. The separa-
bility condition ensures that network effects cancel in payoff differences, while the symmetry condition
ensures integrability.

The full argument requires showing that the combined dynamics—mutation plus selection—remain
a gradient flow when both components individually are. This holds when the mutation reference measure
U aligns with the selection equilibrium, which is generically the case when p is chosen as the invariant
distribution of the pure mutation process. See Hofbauer and Sigmund (1998) and Sandholm (2010) for

the technical machinery. |
D.3 The Consent-Friction Instantiation
For the consent-friction instantiation in Section 5, the conditions specialize as follows:

Corollary D.1 (Gradient Structure for Consent Dynamics). The legitimacy-weighted survival function
ps = L/(1+4F) induces gradient structure when:

(i) The belief-transfer kernel g(0',0) = exp(—y(0O' — 0)) satisfies detailed balance, which holds
when ownership perceptions O(t) define a consistent ordering across configurations.

(ii) Stakes o and alignment o are type-dependent but do not create asymmetric cross-type dependen-
cies: do;/dps = 0 /I .

(iii) The entropy € is either constant across types or depends on types in a symmetric manner.

Under these conditions, the quasi-potential claimed in Section 4.2 is:
V() = logL(7) — log(1 + F (7)) + logws(7) 93)

and friction-minimizing configurations correspond to local minima of V.

D.4 Counterexamples: When Gradient Structure Fails
The conditions are not merely technical. When they fail, qualitatively different dynamics emerge.
D.4.1 Counterexample 1: Rock-Paper-Scissors and Cyclic Dominance

The canonical example of non-gradient dynamics is rock-paper-scissors (RPS), where the payoff matrix
exhibits cyclic dominance:

A=|1 0 -1 %94)

Proposition D.1 (RPS is Non-Potential). The rock-paper-scissors game violates condition (C3). The
payoff differences T; — T; do not satisfy the integrability condition (84), and the replicator dynamics
exhibit neutrally stable cycles around the interior equilibrium p* = (1/3,1/3,1/3).

53



Proof. Direct computation shows 3—[’2 =—1#1= 3—172. The skew-symmetry of A implies the dynamics
preserve a conserved quantity (the product p; psp3), generating closed orbits rather than convergence to
equilibrium. See Hofbauer and Sigmund (1998), Sato and Crutchfield (2003), and Wesson and Rand

(2016). (]

Relevance to ROM: If the legitimacy-friction structure induces cyclic dominance among institu-
tional configurations—where configuration A beats B, B beats C, and C beats A—the dynamics will
cycle indefinitely rather than converge. This can occur when network effects create asymmetric compet-

itive advantages that form dominance cycles.
D.4.2 Counterexample 2: Asymmetric Mutation Kernels

Proposition D.2 (Asymmetric Mutation Induces Circulation). Let Mg be a mutation kernel violating
detailed balance:
Ms(ty — 1) =03, Ms(, — 1) =0.1 95)

Then the replicator-mutator dynamics exhibit a net circulation in state space, and no potential function

exists.

Proof. The probability current Ji, = pyM» — poMp; is non-zero at equilibrium when M, # M. A

gradient flow has zero current at equilibrium (detailed balance), so the dynamics cannot be gradient. W

Relevance to ROM: The belief-transfer modulation g(0',0) = exp(—y(0’' — 0)) is asymmetric
whenever O(7') # O(t). This asymmetry reflects the psychological reality that transitions reducing
ownership perception are harder than transitions increasing it. While this makes the model more re-
alistic, it formally breaks detailed balance. The quasi-potential description in the main text is thus an
approximation valid when the asymmetry is small (Y < 1) or when the ownership landscape is approxi-

mately flat.
D.4.3 Counterexample 3: Network-Induced Oscillations

Proposition D.3 (Network Heterogeneity Breaks Separability). Let the network Gg, partition agents
into two communities with preferential interaction. If community-level fitness depends on relative com-

munity sizes in an asymmetric way:

pS(Ta Gap) = pO(T) : (1 +ﬁ 'Sign(pcommunity(r) - 05)) (96)
then the separability condition (C2) fails, and the dynamics can exhibit limit cycles or chaos.

Proof. The discontinuous dependence on relative population share introduces a non-smooth feedback.
Even smoothed versions create asymmetric payoff dependencies that violate (90). Sato and Crutch-
field (2003) demonstrate that such coupled dynamics can exhibit deterministic chaos in the rock-paper-
scissors game; analogous phenomena arise in networked populations. See also Galla and Farmer (2013)

on chaotic dynamics in learning systems. |

Relevance to ROM: Network structure in institutional dynamics often exhibits precisely this char-
acter: communities that are “winning” attract more members, creating positive feedback that can desta-
bilize equilibria. The ROM framework’s network term Gs, accommodates this but at the cost of gradient

structure.
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D.5 Implications for Main Text Claims

The analysis above clarifies the scope of claims in Section 4.2:

1. The quasi-potential V(7) = logL(t) —log(1 + F(7)) 4+ logws(7) is valid under the conditions
(C1)—(Ca).

2. When detailed balance fails (asymmetric belief-transfer), the dynamics remain well-defined but

may exhibit circulation around equilibria rather than monotonic convergence.

3. When network separability fails, the dynamics can exhibit limit cycles or chaos, particularly when

institutional configurations form cyclic dominance structures.

4. The empirical prediction that friction-minimizing configurations are attractors remains qualita-
tively valid when condition violations are small: the quasi-potential provides a good approxima-
tion to the “energy landscape” even if not exact.

The friction-minimization claim is most robust for:

* Slowly evolving networks: When G, changes on timescales much longer than population dy-
namics, the network contribution becomes effectively constant, restoring separability.

* Small belief-transfer asymmetry: When 7 is small, the detailed balance violation is perturbative
and the quasi-potential approximation is accurate.

* Strong friction gradients: When legitimacy differences between configurations are large, the
gradient term dominates any circulation terms, and the dynamics approximately follow the poten-

tial descent.

These are the conditions under which the main text’s claims are most secure. When they fail, ROM
still provides a valid dynamical description, but convergence to friction-minimizing configurations is
no longer guaranteed—oscillations, cycles, and complex attractors become possible, consistent with the

observed instability of many governance arrangements in practice.

D.6 Technical Notes

On the Shahshahani metric and information geometry. The Shahshahani metric is the unique (up
to scaling) Riemannian metric on the simplex that is invariant under sufficient statistics and coincides
with the Fisher-Rao metric from information geometry (Shahshahani, 1979). This connection explains
why the relative entropy appears naturally in the potential (91): replicator dynamics are gradient flows
of relative entropy when the game has potential structure.

On potential games in economics. The characterization of potential games is due to Monderer
and Shapley (1996). Their key result—that a game is potential if and only if the payoff Jacobian is
symmetric—is the game-theoretic analogue of the classical result that a vector field is a gradient if and
only if its Jacobian is symmetric.

On chaotic dynamics in games. The emergence of chaos in simple game dynamics was demon-
strated by Sato and Crutchfield (2003) for coupled replicator equations and by Galla and Farmer (2013)
for best-response learning. Pangallo et al. (2019) show that convergence to Nash equilibrium is the ex-
ception rather than the rule in generic games. ROM inherits these properties when the underlying fitness

landscape fails the potential conditions.
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E Microfoundations of the Ownership Modulation Function

The ownership-modulation function g(0’,0) = exp(—y(O’ — O)) appears in Section 4.2 as the belief-
transfer mechanism that suppresses transitions reducing aggregate ownership perception. This Arrhenius-
like form is not an arbitrary parameterization but emerges from convergent derivations across four inde-
pendent literatures. The exponential form appears whenever transitions require overcoming barriers in

stochastic environments, whether the barriers are thermodynamic, psychological, or informational.

E.1 Statistical Mechanics Foundation

In the statistical physics of social systems (Castellano et al., 2009), collective behavior emerges from mi-
croscopic transition rates that follow Boltzmann distributions. The probability of a system transitioning

from state 7’ to T depends exponentially on the energy barrier:

, AE
P(T = 7) o exp <_kT> ©7)
where AE is the energy barrier, k is Boltzmann’s constant, and 7 is temperature.

When ownership perception O serves as a component of the effective energy landscape—higher
ownership corresponding to deeper potential wells—the exponential dependence on ownership differ-
entials follows directly. The physical intuition is that random fluctuations (shocks, exogenous events)
must supply the activation energy to overcome ownership resistance; the probability of sufficiently large
fluctuations decays exponentially with barrier height.

Mapping to institutional transitions:

* Energy barrier AE < Psychological cost of abandoning ownership claims
» Temperature T <+ System volatility or “noise” in the institutional environment

* Transition rate <+ Institutional change probability
E.2 Kramers Rate Theory
Kramers’ theory (Hédnggi et al., 1990) describes the escape rate of a Brownian particle from a metastable
W, 0y AU )
r= exp| —— (98)
D Yie T ( kT

where AU is the barrier height, Y. is the friction coefficient, and w,, @, characterize the potential well

potential well:

curvature.

Application to institutional transitions: An institutional configuration with established ownership
claims is analogous to a particle trapped in a potential well. The “depth” of the well corresponds to
the strength of ownership psychology. Transition to a new configuration requires crossing an activation
barrier, and the exponential dependence on barrier height (ownership differential) emerges from the
probability distribution of random fluctuations that can supply the necessary “energy.”

The Kramers framework predicts that transition rates should depend exponentially on the ownership
differential (O’ — O), which is precisely the ROM claim. The parameter ¥ in ROM corresponds to the

barrier steepness divided by effective temperature.

E.3 Behavioral Economics Foundation

The endowment effect demonstrates that people value objects they own more highly than equivalent
objects they do not own (Kahneman and Tversky, 1979). Critically for ROM:
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(1) Duration dependence: Valuation increases with ownership duration (Strahilevitz and Loewen-
stein, 1998). Experimental data shows that holding an object for 30 seconds versus 10 seconds
increased valuation by approximately 37%.

(i) Loss aversion: Prospect theory establishes that losses loom larger than gains, with the value
function typically parameterized as asymmetric around the reference point.

(iii) Status quo bias: Samuelson and Zeckhauser (1988) document systematic preference for current
states independent of their objective quality.

Derivation of exponential form: When agents evaluate transitions between ownership states using
a softmax/logit choice rule, the probability of accepting an ownership-reducing transition becomes:

1
1 +exp(A-]AO|)

P(accept) = ~exp(—A-AO) forAO >0,A > 1 (99)

where A is the loss aversion coefficient. The ROM parameter y absorbs this behavioral asymmetry:
y=A-9dV /A0, where V is the value function and O is ownership perception.
E.4 Bounded Rationality Foundation

Quantal Response Equilibrium (QRE) models bounded rationality using the Boltzmann/softmax choice
rule (McKelvey and Palfrey, 1995):

Pl — _PB-U(@)

=¥, exp(B-Ula))) (100)

where f3 is the “rationality parameter” (inverse temperature).

Ortega and Braun (2013) show that when decision-making has information-processing costs, the
optimal policy is a Boltzmann distribution over actions. The “temperature” corresponds to the trade-
off between expected utility and computational costs. This provides a normative foundation for the
exponential form: it is not just empirically observed but is the optimal response for boundedly rational
agents.

When agents evaluate transitions between institutional configurations, their acceptance probability
follows:

P(t' = 1) <exp(B-AV (7, 7)) (101)

If ownership perception O is a component of subjective value V, and if the relationship is approximately

linear, then:

P(t — 1) < exp(—y(0' - 0)) (102)

The parameter ¥ in ROM corresponds to f3 - dV /d O—the product of rationality and the marginal value

of ownership.

E.5 Convergent Validity

The four pathways converge on the same functional form through different mechanisms:
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Pathway Mechanism Key Parameter

Statistical Mechanics ~ Boltzmann distribution E,/kT
Kramers Rate Theory  Barrier-crossing escape rate AU /kT
Behavioral Economics Loss aversion + logit response A - AO

Bounded Rationality Info-theoretic optimal policy  f3-AV

The ROM parameter Y unifies these interpretations:

* In statistical mechanics: inverse temperature times ownership-energy coupling
* In Kramers theory: barrier steepness in ownership space
* In behavioral economics: loss aversion coefficient times ownership salience

* In bounded rationality: rationality parameter times marginal value of ownership

That the same functional form emerges from physics, economics, and cognitive science independently—
through different mechanisms and assumptions—provides convergent validation that goes beyond any

single theoretical commitment.

E.6 Empirical Predictions

The distinctive implication is that regime transition probability should decrease exponentially with in-
cumbent tenure, controlling for legitimacy and resources. Unlike generic “institutional stickiness” ex-

planations that predict gradual resistance, the Arrhenius form predicts a specific functional relationship:
P(transition|tenure = t) o< exp(—7- f(t)) (103)

where f(t) is the ownership accumulation function (plausibly linear or logarithmic in tenure).

Testable distinctions:

(i) Exponential vs. linear: Linear resistance predicts constant marginal resistance to ownership loss;
exponential predicts increasing marginal resistance.
(ii) Exponential vs. power-law: Power-law resistance (y- |A0[ﬁ) predicts different behavior near
zero (linear approach vs. exponential approach).
(iii)) Time-series signature: Regime survival probability should follow exponential decay with in-

creasing ownership accumulation, testable via hazard models against historical institutional data.
E.7 Limitations
The derivation assumes:
(i) Linear relationship between ownership perception and effective barrier height (may saturate at
extremes)

(il) Homogeneous 7 across institutional contexts (likely varies)

(iii) Continuous ownership accumulation (may exhibit jumps at critical events)

These assumptions are standard simplifications that enable tractability. Empirical calibration of 7y
across domains remains an open task, though the qualitative prediction—exponential rather than linear

or power-law resistance—is robust to reasonable parameter variation.
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F Formal Verification in Lean 4

The algebraic core of the ROM equation and its consent-friction instantiation have been machine-
checked in Lean 4 (v4.27.0) with the Mathlib library (v4.27.0). The formalization covers four mod-
ules totaling 28 machine-checked theorems with zero errors, zero sorry placeholders, and zero axioms

beyond Lean’s foundational type theory:

* ROM/Basic.lean: Simplex preservation, row-stochastic normalization, identity-kernel Bayesian
reduction, detailed balance, RPS non-potential, consent-weighted survival monotonicity (11 the-
orems)

* ROM/Advanced.lean: Survival function properties—nonnegativity, zero-legitimacy collapse, lin-
earity, upper bound, positivity, constant-source invariance (6 theorems)

* ROM/Transfers.lean: Moving equilibrium existence, impossibility of static equilibrium under
varying legitimacy/friction, bounded chase error, dissensus from positive discrepancy, path non-
negativity (5 theorems)

* ROMEthics/: Welfare-friction bridge theorems connecting ethical survival to ROM consent sur-
vival, monotonicity in benefit and alignment, anti-monotonicity in harm and friction, boundary

recovery conditions (6 theorems)

The Transfers module is particularly notable: it proves that ROM dynamics under time-varying legit-
imacy and friction admit moving equilibria but not static equilibria—a formal verification of the paper’s
central claim that persistent systems do not reach classical equilibria but track them asymptotically. The
dissensus theorem (rom_dissensus_of_positive_discrepancy) formalizes the connection between

stake-voice mismatch and institutional instability.

Selected proof: simplex preservation (§4.1).

| theorem rom_simplex_invariant {n : N} (f p : Fin n -> R)
2 (M : Fin n -> Fin n -> R)

(hM : forall j, sum i : Fin n, M j i = 1)

4 (hp : sum i : Fin n, p i = 1)

5 sum i : Fin n,

6 ((sum j : Fin n, £ j *x M j i) -

7 pix* (sum j : Fin n, £ j)) = 0 := by

8 have hl1 : sum i, sum j, £ j * M j i = sum j, £ j :=

9 row_stochastic_sum f M hM

0| have h2 : sum i, p i * (sum j, f j) = sum j, £ j := by
T rw [<- Finset.sum_mul, hp, one_mul]

have h3 : -- distribute sum over subtraction

13 sum i, (sum j, £ j * M j i - p i % (sum j, £ j)) =
14 (sum i, sum j, £ j * M j i) - (sum i, p i * (sum j, £ j)) := by
15 simp_rw [sub_eq_add_neg]

16 rw [Finset.sum_add_distrib, Finset.sum_neg_distrib]

17 rw [h3, hl, h2, sub_self]

Selected proof: alignment increases ethical survival (ROMEthics).

theorem ethicalSurvival_mono_alignment_via_friction

o

{benefit harm weight sigma alphal alpha2 epsilon : R}
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(hW : 0 < welfareScore benefit harm weight)

4 (hsigma : 0 < sigma) (heps : O <= epsilon)
(halphal : -1 < alphal) (halpha : alphal < alpha?2)
6 ethicalSurvival benefit harm weight

(friction sigma alphal epsilon) <

8 ethicalSurvival benefit harm weight
9 (friction sigma alpha2 epsilon) := by
10 have hF : friction sigma alpha2 epsilon <

1 friction sigma alphal epsilon :=
12 friction_strict_anti_alignment hsigma heps halphal halpha

13 -- reduces to consent_survival_anti_friction

Source code and build instructions: Farzulla (2026). Verification reproduces via lake build with
Lean 4 v4.27.0 and Mathlib v4.27.0. Zero sorry placeholders, zero axioms beyond Lean’s foundational

type theory.
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Table 1: Machine-checked theorems and their correspondence to paper results.

Lean theorem Ref. Description

ROM/Basic.lean — Core algebraic results

row_stochastic_sum §4.1 Row-stochastic kernel preserves total
mass

rom_simplex_invariant §4.1 Y pi = 0 (simplex preservation)

identity_kernel_selection Rmk. 4.1 M =1 collapses to pure selection

identity_kernel_row_stochastic Rmk. 4.1 Identity kernel is row-stochastic

detailed_balance_zero_flow App.D  Detailed balance = zero net flow

asymmetric_kernel_no_uniform_ App. D Asymmetric M violates detailed bal-

balance ance

rps_skew_symmetric App.D A;j = —Aj; for RPS

rps_not_potential App.D  RPS violates integrability

skew_symmetric_nonzero_not_ App. D Nonzero skew-entry = non-potential

potential

consent_survival_mono_legitimacy §5 dp/IdL>0

consent_survival_anti_friction §5 dp/dF <0

ROM/Advanced.lean — Survival function properties

consent_survival_nonneg §5 L>0,F>0=p>0

consent_survival_zero_legitimacy §5 L=0=p=0

consent_survival_scale_legitimacy §5 p(cL,F)=c-p(L,F)

consent_survival_le_legitimacy §5 p(L,F)<LwhenF >0

consent_survival_pos §5 L>0,F>0=p>0

row_stochastic_sum_const §4.1 Constant  source  through row-

stochastic kernel

ROM/Transfers.lean — Dynamic equilibrium results

rom_movingEquilibrium §4-5  ROM path admits moving equilibrium

rom_no_static_if_path_varies §4-5  Varying L/F precludes static equilib-
rium

rom_path_boundedChase_zero §4-5 Exact tracking yields zero chase error

rom_dissensus_of_positive_ §5.3 Positive discrepancy = dissensus

discrepancy

romPath_nonneg §5 Nonneg L/F signals = nonneg path

ROMETthics/ — Welfare-friction bridge

ethicalSurvival_mono_benefit §5 9Peth/9b >0

ethicalSurvival_anti_harm §5 9Peth/dh < 0

ethicalSurvival_eq_rom_survival_ §5 Zero harm recovers ROM survival

of _zero_harm

ethicalSurvival_mono_alignment_ §5 Better o increases survival via lower

via_friction F

ethicalSurvival_eq_welfare_of_ §5 Zero friction recovers raw welfare

zero_friction

ethicalSurvival_le_welfare §5 Ethical survival < welfare
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