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Abstract

Multi-agent systems face a fundamental coordination problem: agents must coordinate despite
heterogeneous preferences, asymmetric stakes, and imperfect information. When coordination fails,
friction emerges—measurable resistance manifesting as deadlock, thrashing, communication over-
head, or outright conflict. This paper derives a formal framework for analyzing coordination friction
from a single axiom: actions affecting agents require authorization from those agents in proportion
to stakes.

From this axiom of consent, we establish the kernel triple (o, 0,€)—alignment, stake, and
entropy—characterizing any resource allocation configuration. The friction equation F = o - (1 +
€)/(1+ o) predicts coordination difficulty as a function of preference alignment ¢, stake magnitude
o0, and communication entropy €. The Replicator-Optimization Mechanism (ROM) governs evolu-
tionary selection over coordination strategies: configurations generating less friction persist longer,
establishing consent-respecting arrangements as dynamical attractors rather than normative ideals.

We develop formal definitions for resource consent, coordination legitimacy, and friction-aware
allocation in multi-agent systems. The framework yields testable predictions: MARL systems
with higher reward alignment exhibit faster convergence; distributed allocations accounting for
stake asymmetry generate lower coordination failure; Al systems with interpretability deficits pro-
duce friction proportional to the human-Al alignment gap. Applications to cryptocurrency gover-
nance and political systems demonstrate that the same equations govern friction dynamics across
domains—a complexity science perspective on coordination under preference heterogeneity.
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1 Introduction

1.1 The Coordination Problem

Multi-agent systems face a fundamental tension: agents must coordinate despite heterogeneous pref-
erences, asymmetric stakes, and imperfect information (Olson, 1965). When coordination succeeds,
resources flow efficiently and system-level objectives emerge from local interactions. When coordina-
tion fails, the result is friction—measurable resistance manifesting as wasted computation, deadlock,
thrashing, or outright conflict.

A striking empirical puzzle motivates this paper: why do structurally similar interventions pro-
duce radically different resistance across systems? Consider two classes of coordination events. Pro-
tocol upgrades proposed through established governance channels—Bitcoin Improvement Proposals,
Ethereum’s EIP process, community-ratified hard forks—generate remarkably low friction despite their
technical complexity. The same systems respond to externally imposed changes with volatility ampli-
fication factors exceeding 5.7 x baseline levels (Farzulla, 2025¢). Both intervention types alter system
conditions; both require participant adaptation; both carry economic stakes. Yet one class integrates
smoothly while the other generates persistent turbulence.

This asymmetry is not unique to cryptocurrency. Distributed systems with participatory resource
allocation exhibit lower coordination failure than systems with centralized allocation imposed with-
out agent consent. Multi-agent reinforcement learning with aligned reward functions converges more
reliably than systems with misaligned incentives. The pattern repeats: interventions aligned with stake-
holder preferences encounter less friction than interventions misaligned with those preferences, even
when the two produce identical immediate outcomes.

This paper argues that these patterns reflect a single underlying phenomenon: friction—the mea-
surable resistance generated when decision authority diverges from consequence-bearing. Sornette
et al. (2026) independently derive a structural friction framework from statistical physics, identifying
learned human interaction structures as sources of alignment failure whose disruption by AGI consti-
tutes an endogenous evolutionary shock. Their formalization converges with the axiomatization pre-
sented here from a completely different disciplinary foundation, providing strong convergent evidence
for the friction-based approach. Further convergent evidence comes from opinion dynamics: Stokes
et al. (2024) develop an agent-based model with pairwise affinity, memory capacity, and heterogeneous
interaction thresholds, proving that consensus obtains under full interaction but that limited interac-
tion drives collective extremisation and oscillatory dynamics. Their “limited interaction” is formally
analogous to friction in our framework—structural constraints on who interacts with whom—and their
finding that restricting interaction produces extremisation rather than moderation provides independent
mathematical confirmation from social psychology of our prediction that friction does not merely slow
coordination but qualitatively reshapes outcomes. We derive a complete formal framework from a sin-
gle axiom: actions affecting agents require authorization from those agents in proportion to stakes.
From this “axiom of consent,” we establish the kernel triple (a, o, €)—alignment, stake, and entropy—
characterizing any consent-holding configuration.

The canonical friction equation predicts system behavior:

1+¢€

F-o. |
°Tra M

Friction F increases with stake magnitude o, increases with information loss &, and decreases with
alignment . When consent-holders are perfectly aligned with stake-holders (¢ = 1) and information



transmission is perfect (¢ = 0), friction reduces to an irreducible baseline ¢ /2—the minimal coordi-
nation cost of delegation itself. When consent-holders are perfectly misaligned (o — —1), friction
diverges.

1.2 Connection to Multi-Agent Systems

The framework provides natural primitives for multi-agent coordination:

* Consent-holding maps to resource allocation authority. An agent “holds consent” over a resource
if it controls allocation decisions for that resource.

» Stakes map to consequence exposure. An agent’s stake in a decision is the magnitude of utility
change that decision can induce.

* Alignment maps to preference correlation. Two agents are aligned if their utility functions corre-
late positively over the relevant decision space.

* Entropy maps to communication overhead. Information loss between decision-makers and af-
fected agents creates coordination uncertainty.

* Friction maps to coordination failure. Wasted computation, deadlock, thrashing, and explicit
conflict are manifestations of friction.

* Legitimacy maps to sustainable coordination. Arrangements where voice tracks stakes persist;
arrangements where voice and stakes diverge generate accumulating friction until reconfiguration.

The Replicator-Optimization Mechanism (ROM) (Farzulla, 2025g) governs evolutionary selection
on coordination configurations:

L(7) -

dp:(7) -W'MS(T/%T)*M(T)'@ 2

o =La(E)0()

Configurations with high legitimacy L and low friction F persist; those generating unsustainable friction
are selected against. This provides a formal basis for understanding why certain coordination patterns
emerge and persist while others fail.

1.3 Existing Approaches and Their Limitations

Three theoretical traditions have addressed multi-agent coordination. Each captures important features;
none provides the unified apparatus we seek.

Mechanism Design. The Hurwicz-Myerson-Maskin tradition (Hurwicz, 1960; Myerson, 1981;
Maskin, 1999) provides powerful tools for incentive-compatible allocation. Recent work on commitment-
enhanced communication (Avoyan and Ramos, 2023) demonstrates that credible coordination mecha-
nisms significantly improve efficiency over cheap talk. Yet mechanism design assumes preference rev-
elation: agents report preferences, and the mechanism aggregates them. This assumption breaks down
when agents cannot reveal preferences (bandwidth constraints), will not reveal preferences (strategic
concealment), or when revealed preferences are systematically distorted by power asymmetries. Mech-
anism design also lacks a natural treatment of stakes asymmetry: the agent most affected by a decision
may have least voice in its governance.

Evolutionary Game Theory. Replicator dynamics (Taylor and Jonker, 1978), the Price equation
(Price, 1970), and evolutionary stability concepts (Maynard Smith and Price, 1973) provide powerful
tools for analyzing strategic interaction under selection. Vanderschraaf’s work on inductive deliberation
(Vanderschraaf, 2001) shows how correlated equilibria emerge from rational learning, while Golman and



Page (Golman and Page, 2009) demonstrate inherent speed-accuracy tradeoffs in decentralized decision-
making. Yet evolutionary game theory as standardly formulated ignores normative structure: replica-
tor dynamics describe what persists, not what coordination patterns should emerge. The gap between
fitness and legitimacy—between what survives and what generates sustainable coordination—remains
unbridged.

Multi-Agent Reinforcement Learning. MARL provides computational tools for learning coordi-
nation (Busoniu et al., 2008; Zhang et al., 2021). Organizational research reveals the dual challenge of
search and coordination: hierarchical influence structures outperform flat teams in environments requir-
ing rapid convergence (Kocak and Puranam, 2023), while network centralization improves collective
adaptability when two-way information flow is preserved (Bernstein et al., 2002). Yet MARL typically
assumes reward functions are given, not derived. The framework asks how agents learn to coordinate
given objectives; it does not ask how objectives themselves should be structured to minimize coordina-
tion failure. The consent-friction framework addresses this gap: alignment ¢ measures reward function
correlation, and the friction equation predicts coordination difficulty given alignment structure.

1.4 Our Contribution

This paper provides a unified formal framework for analyzing friction dynamics in multi-agent systems.
Our contributions are threefold.

Contribution 1: Single Axiom to Complete Apparatus. We derive a complete formal framework
from a single axiom: actions affecting agents require authorization from those agents in proportion to
stakes. From this axiom, we derive the kernel triple (@, 0, €). These three quantities characterize any
consent-holding configuration and determine its friction profile. The kernel triple is not an analogy
across domains but the same mathematical structure applied at different scales.

Contribution 2: Scale-Relative Framework via Coarse-Graining. The kernel triple operates at
multiple scales simultaneously. An individual agent holds consent over local decisions. A coalition holds
consent over collective resources. A system holds consent over global parameters. We develop a coarse-
graining apparatus connecting micro-level dynamics to macro-level observables. Under lumpability
conditions we specify, friction dynamics at scale S approximately preserve structure when projected to
scale S'.

Contribution 3: Multi-Agent Coordination as Primary Application. We demonstrate the frame-
work’s power through detailed application to multi-agent systems:

(i) Resource allocation as consent-holding, with friction as coordination failure
(i) Alignment verification via kernel triple measurement
(iii) ROM dynamics governing agent population evolution
(iv) Predictions for coordination stability and phase transitions

We also show how the framework applies to other domains—cryptocurrency governance, political
legitimacy—as instances of the same underlying structure, demonstrating the generality of consent-
friction dynamics.

1.5 Methodological Notes

Several methodological points require clarification.

Descriptive, Not Prescriptive. We do not claim that consent ought to be respected; we claim that
configurations where consent is respected exhibit lower friction. This is an empirical claim, testable
through the operationalizations we provide. The framework is descriptive: it predicts friction levels
given consent configurations. Whether lower friction is desirable is a separate question.



However, we offer a bridge principle. If agents prefer lower coordination failure (lower friction),
then configurations with higher consent alignment are instrumentally preferred. This conditional struc-
ture avoids the is-ought fallacy while grounding normative discourse in empirically tractable dynamics.

Falsifiability. The framework is falsifiable at the level of measurement apparatus. If the operational-
izations we provide (Section 6) fail to predict friction across domains, the framework fails. We provide
specific empirical predictions: multi-agent systems with higher reward alignment should exhibit lower
coordination failure; systems with higher legitimacy should exhibit greater stability. Failure of these
predictions would falsify the framework.

Scope Conditions. The framework applies where Lewontin’s minimal conditions for selection hold
(Lewontin, 1970): variation among configurations, differential persistence, and heritable transmission.
Multi-agent systems with learning and adaptation satisfy these conditions naturally.

1.6 Roadmap

The paper proceeds as follows.

Section 2 develops the Axiom of Consent from first principles, deriving the kernel triple and estab-
lishing primitive definitions.

Section 3 presents the kernel triple formalism, connecting the axiom to the ROM evolutionary dy-
namics.

Section 4 develops the dynamical treatment: friction evolution, legitimacy dynamics, and key theo-
rems including Lyapunov stability conditions.

Section 5 applies the framework to multi-agent coordination as the primary domain, with supple-
mentary applications to cryptocurrency governance and political systems demonstrating cross-domain
generality.

Section 6 develops the measurement apparatus, specifying operationalizations for alignment, stake,
and entropy with focus on multi-agent system applicability.

Section 7 addresses objections, limitations, and pathological cases.

Section 8 concludes with implications for Al alignment, distributed systems design, and directions
for future work.

2 The Axiom of Consent

2.1 Informal Statement

We begin with a claim that appears normative but is, upon examination, purely structural:

The Axiom of Consent (Informal)

No entity may be bound by commitments it did not consent to, weighted by its stake in the out-

come.

The standard reading treats this as a moral principle—an ought claim about political legitimacy or
individual rights. We propose a radically different interpretation. The axiom describes an unavoidable
structural feature of any system where multiple agents interact in shared decision domains. It is not
a prescription for how governance should operate but a description of a constraint that all governance
arrangements face.

The insight is this: wherever decisions affecting multiple parties occur, some locus of control de-
termines outcomes. This locus may be concentrated (a sovereign, an algorithm, a parent) or distributed
(a vote, a market, a consensus mechanism). It may be explicit (constitutional authority) or implicit
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(first-mover advantage, social convention). But it cannot be absent. Even “leaving things to chance” dis-
closes a prior decision to permit randomness; even “letting the market decide” reveals the meta-choice
to instantiate market mechanisms.

We call this locus consent-holding—the custody of decision authority in a shared domain. The
axiom’s force lies not in normative assertion but in structural necessity: consent-holding is unavoidable

wherever outcomes occur.
2.1.1 Why This Is Not Normative Ethics

Traditional normative ethics asks: Who should hold consent? The utilitarian answers: whoever maxi-
mizes aggregate welfare. The deontologist answers: whoever respects categorical duties. The contrac-
tualist answers: whoever would be chosen under idealized conditions. Each tradition offers criteria for
adjudicating disputes about legitimate authority.

We ask a different question entirely: What happens when consent-holding configurations misalign
with stakes? This is a descriptive question with empirical answers. When those with high stakes have low
voice, friction accumulates. When those with low stakes have high voice, different frictions emerge. The
relationship between consent-holding and consequence-bearing determines system dynamics regardless
of normative evaluations.

This reframing transforms the axiom from a contested moral principle into a falsifiable structural
hypothesis: configurations where consent-holding diverges systematically from stake-bearing exhibit
predictable friction patterns. The axiom does not tell us who should hold consent; it predicts what will
happen under various consent-holding configurations.

2.1.2 Consent-Holding as Structural Fact

Consider the minimal assumptions required for the axiom to apply:

1. Agents act in shared domains
2. Actions produce outcomes
3. Preferences and stakes differ across agents

4. Attention and capacity are finite

From these four premises—none of them normative—a structural conclusion follows: in any domain
where a non-null outcome occurs, some procedure selected an action, and therefore some locus of control
held the right to decide.

This locus may be:

* Concentrated: a monarch, CEO, parent, algorithm owner

Distributed: a vote, board, consensus mechanism
* Delegated: a randomization rule, market mechanism, coin flip
* Encoded: an algorithm, smart contract, institutional procedure

But it cannot be absent. This is the axiom’s structural content: consent-holding is unavoidable in
multi-agent coordination. Even radical disagreement about who should hold consent presupposes that

someone does.
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2.2 Formal Axiom
We now state the axiom formally, integrating notation from the unified framework.

Axiom 2.1 (The Consent Principle). For any decision d € Z affecting agent i € <7 with stake s;(d) > 0,
the legitimacy of the decision is determined by:

Legitimate(d) <— Z si(d) -¥[Consent;(d)] > 6 - Z si(d) 3)
ieSy i€Sy

where S; = {i € &7 : 5i(d) > 0} is the affected set, #[Consent;(d)] is the indicator of agent i’s consent
to decision d, and 6 € (0, 1] is a threshold parameter.

This formal statement encodes several substantive commitments:

Stakes-weighting. Consent is weighted by stakes. An agent with stake s;(d) = 10 who consents
contributes more to legitimacy than an agent with stake s;(d) = 1 who consents. This reflects the propor-
tionality principle: those who bear greater consequences should have proportionally greater voice (Brig-
house and Fleurbaey, 2010; Mackay, 2020; Afsahi et al., 2021).

Threshold structure. The threshold 6 parameterizes how much stake-weighted consent is required
for legitimacy. At 8 = 1, only unanimity among affected parties suffices. At lower values, supermajority
or simple majority thresholds apply. This connects to the classical analysis of optimal majority rules by
Buchanan and Tullock (1962), who showed that different decision types warrant different threshold
structures. The framework does not specify 0; different domains may require different thresholds.

Affected set restriction. Only those with positive stakes are included in the legitimacy calculation.
This addresses the boundary problem in democratic theory (Arrhenius, 2005; Goodin, 2007): who counts
in aggregation? Our answer: those with nonzero stakes in the domain.

The binary consent indicator ¥[Consent;(d)] is a simplification. In practice, consent admits degrees—
enthusiastic endorsement, reluctant acquiescence, resigned acceptance, passive non-resistance. We ad-
dress this complexity through the alignment function below.

2.3 Derived Concepts

From the axiom, we derive three central concepts: alignment, aggregate alignment, and friction. These
definitions operationalize the intuitive notions that ground the framework.

Definition 2.2 (Alignment). For agent i in domain d at time ¢, the alignment o;(d,t) € [—1, 1] measures
the correlation between agent i’s target function and the consent-holder’s target function:

COV(T;7TH( ))
\/Var ) - Var(Ty )

a;(d,t) = corr(Ti(S), Ty a,)( “4)

where T; : ¢ — R is agent i’s target function, H(d,t) denotes the consent-holder in domain d at time ¢,
and the correlation is computed under a probability measure over the state space S.

Alignment captures whether the consent-holder optimizes for outcomes that agent i also values.
When o; = 1, the consent-holder’s target function perfectly correlates with i’s—they want the same
things. When o; = —1, perfect misalignment: what the consent-holder pursues is precisely what i seeks
to avoid. When o; = 0, the targets are orthogonal—the consent-holder’s optimization is irrelevant to i’s
interests.
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Definition 2.3 (Aggregate Alignment). The aggregate alignment in domain d at time ¢ is the stakes-
weighted average of individual alignments:
 Yies,si(d) - ai(d,1)

At == ) ©)

Aggregate alignment measures how well the consent-holder’s optimization serves the affected popu-
lation as a whole, weighted by stakes. A consent-holder who perfectly aligns with high-stakes parties but
misaligns with low-stakes parties achieves higher aggregate alignment than one who does the reverse.

Definition 2.4 (Friction). The friction in domain d at time ¢ is:

1+¢e(d,t)

PN =) 1ot

(6)

where:
* 0(d) = Yes, si(d) is the total stake magnitude
* £(d,t) € ]0,1] is the information entropy
* a(d,t) € [—1,1] is the aggregate alignment

Remark 2.5 (Empirically-Refined Friction Form). The MARL factorial experiment (Appendix C) reveals
that the alignment—friction relationship is U-shaped rather than monotonic: neutral alignment (& = 0)
produces the worst coordination outcomes, while both cooperative (¢ > 0) and adversarial (@ < 0)
alignment reduce friction. This motivates an empirically-refined quadratic form:

1+¢(d,t)

FP(d,1) = o(d)- TTald e

(N
The quadratic form agrees with the canonical form at & = 0 (both yield 6(1+ ¢€)) and at a = 1 (both
yield o(1+ €)/2), but diverges in the adversarial regime (¢ < 0): where the canonical form diverges
as oo — —1, the quadratic form remains bounded, with maximum friction at ¢ = 0 and symmetric
attenuation toward both alignment extremes. The quadratic specification achieves R?> = 0.34-0.43 in
MARL validation compared to R? = 0.05-0.13 for the canonical form (Section 6). The canonical form
is retained as the theoretical baseline satisfying the uniqueness conditions of Appendix B; the quadratic
form is presented as an empirical refinement that relaxes the divergence desideratum D6 to a bounded
non-monotonicity condition D6’ (see Appendix B for the formal derivation under D6').

The friction function captures the structural tension in a consent-holding configuration. Three com-
ponents interact:

Stake magnitude (o) amplifies friction proportionally. High-stakes domains generate more friction
than low-stakes domains, all else equal. A consent-holder making decisions about life and death faces
more friction than one choosing office supplies.

Entropy (€) captures information loss in the consent-holding relationship—the proportion of af-
fected parties’ preferences that the consent-holder does not know or cannot implement. Even perfectly
aligned agents generate friction when entropy is high, because the consent-holder optimizes for a mis-
specified version of what affected parties actually want.

Alignment () appears in the denominator: higher alignment reduces friction, lower alignment am-
plifies it. As a@ — —1 (perfect misalignment), friction approaches infinity—the consent-holder actively
pursues outcomes that affected parties seek to avoid.
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This functional form is not arbitrary. It satisfies desirable properties:

* F > 0 for all valid inputs (friction is non-negative)

* Asa — 1: F — o(1+€)/2 (minimal friction proportional to stakes and entropy)
* As o — —1: F — oo (unbounded friction under misalignment)

* Withe =0and @ = 1: F = 6/2 (irreducible baseline)

The irreducible baseline 6 /2 reflects a deep insight: delegation has friction even in paradise. Even
ideally aligned agents with perfect information incur transaction costs—the cognitive and coordinative
overhead of consent-holding itself.

The quadratic form F?) = (14 ¢)/(1 + a?) from Remark 2.5 satisfies modified properties:
« F? > 0 for all valid inputs (friction is non-negative)
* Maximum at & = 0: F(?) = o(1+ €) (neutral alignment is worst)

* Minimum at o = £1: F® = (1 +¢)/2 (symmetric attenuation)

No singularity: F(?) is bounded for all & € [—1,1]

Withe =0anda=1: F¥ =¢ /2 (same irreducible baseline)

2.4 Properties

We establish basic properties of the friction function through formal propositions.
Proposition 2.1 (Zero Friction Condition). F(d,t) =0 if and only if 6(d) = 0.

Proof. 1f 6(d) = 0, then by Definition 2.4, F(d,t) =0- £ = 0.

Conversely, suppose F(d,t) = 0 with (d) > 0. Then:

1+¢e(d,1)

O:G(d)-m

Since o(d) > 0, we require (1+¢)/(1+ ) =0. But € > 0 implies | +€& > 1> 0, and @ < 1 implies
1 4+ o0 <2 < oo, Thus the fraction is positive, contradiction. Therefore o(d) = 0. | |

This proposition captures an important insight: friction cannot be eliminated in any domain with pos-
itive stakes. Zero friction requires zero stakes—only domains where no one is affected can be friction-
free.

Proposition 2.2 (Alignment Effect). For fixed 6 > 0 and € > 0:

oF

— <0
8o¢<

Friction decreases as alignment increases.

Proof.
JdF d 1 o(l+eg)
& s (lte) —(—— )= T" 9
Ja_ ° (1+¢) 8a<1—|—a> (1+a)2<
since 6 >0, 1 +¢&>0,and (1+a)? >0 for o > —1. | [ |
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Proposition 2.3 (Stake Effect). For fixed o« < 1 and € > 0:

IF

0
86>

Friction increases with stake magnitude when alignment is imperfect.

Proof.
oF 1+¢
-— = >0
Jdo 1+«
since € > 0 implies 1 + € > 1, and a < 1 implies 1 + & < 2, hence the ratio is positive. [ | |

Proposition 2.4 (Entropy Effect). For fixed 6 > 0and o € (—1,1]:

oF
-— >0
de
Friction increases with information entropy.
Proof.
JF © -0
de  1+a
sincec >0and 14+ a >0 for o > —1. | |

These four propositions establish the basic comparative statics of the friction function. They for-
malize intuitions that will prove central to empirical applications: higher stakes amplify friction; better
alignment reduces it; information loss increases it; and zero friction requires zero stakes.

2.5 Information-Theoretic Foundations

The friction function F = o(1+¢€)/(1 + ) is not merely an intuitive construction but admits rigorous
derivation from information-theoretic principles. We sketch three independent derivations that converge
on this functional form.

2.5.1 Derivation from Constrained Optimization

Consider the optimization problem facing a consent-holder who must balance stakeholder preferences
under information constraints. The consent-holder aims to maximize stakeholder welfare but faces lim-
ited channel capacity for learning preferences:

max Y s;(d)-Uj(a) subjectto [I(a;P) <C;Vi (8)

where I(a;P;) is mutual information between action a and stakeholder i’s preferences P, and C;
is channel capacity. The Lagrangian dual yields friction as the shadow price of information con-
straints (Cover and Thomas, 2006):

F =Y si(d)-A-Dk(P|P) ©)

i€Sy
where A; are dual variables and Dg; is Kullback-Leibler divergence between true and estimated

preferences. Under appropriate regularity conditions, this reduces to the friction equation with & =
D1 (P.||P) and «; entering through the covariance structure of utilities.
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2.5.2 Derivation from Information Decomposition

This derivation connects to Partial Information Decomposition (PID) (Mediano et al., 2022). Consider
a consent-holder H receiving preference signals from stakeholders. The total information available for
decision-making decomposes into:

¢ Redundant information: Shared structure across stakeholder utilities that the consent-holder can
exploit (related to alignment o)

* Unique information: Stakeholder-specific preferences requiring individual attention

* Synergistic information: Information requiring the full ensemble of stakeholder signals to decode
(captured by entropy €)

Friction arises from the mismatch between information required for optimal decision-making and
information available to the consent-holder. The multiplicative form (1+¢€)/(1+ o) reflects that align-
ment and entropy operate on different information dimensions: alignment captures redundant structure
that simplifies coordination, while entropy captures synergistic complexity that resists compression.

2.5.3 Derivation from Diversity Decomposition

Recent work on diversity and institutional resilience (Beinhocker and Bednar, 2025) suggests a comple-
mentary derivation. Bednar’s diversity decomposition identifies three dimensions of systemic variety:

* Variety: Magnitude of heterogeneity in stakeholder preferences — ¢
* Modularity: Degree of clustering in preference space — 1/(1 + @)

* Redundancy: Overlap in stakeholder objectives — 1/(1+¢€)

A multiplicative combination of these dimensions—appropriate when they interact rather than ag-
gregate additively—ryields the friction form. High variety (stakes) amplified by low modularity (mis-
alignment) and low redundancy (high entropy) produces maximal friction.

2.5.4 Convergent Derivations

The convergence of three independent derivations—information-theoretic optimization, PID decompo-
sition, and diversity analysis—provides theoretical support for the friction function’s form. This is not a
proof of uniqueness; alternative functional forms satisfying the same constraints may exist. However, the
convergence suggests that F = o (1+¢€) /(1 + ) captures genuine structural features of consent-holding
configurations rather than arbitrary modeling choices.

For formal uniqueness results under specific axiomatic constraints, see Appendix B.

2.5.5 Functional Form Status: Phenomenological Ansatz

We state explicitly what this derivation does not establish. The friction function F = o(1+¢€)/(1+ «)
is a phenomenological ansatz—a functional form chosen for its desirable mathematical properties and
convergent motivations, not uniquely derived from first principles.

What we have shown: Three independent theoretical perspectives—constrained optimization, in-
formation decomposition, and diversity analysis—suggest this general form. The function satisfies intu-
itive boundary conditions (non-negativity, monotonicity in alignment and entropy, stake-proportionality).
Multiple derivation routes converging on similar structures is suggestive but not conclusive.
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What we have not shown: That this is the unique function satisfying these constraints. Alternative
forms—e.g., F = 0-¢~%(1+¢), or weighted geometric means, or entropy-based divergence measures—
might satisfy similar boundary conditions while yielding different quantitative predictions.

The honest claim: We propose F' as a working hypothesis—a tractable functional form with plausi-
ble theoretical motivation that enables empirical testing. The framework’s value lies not in the specific
functional form but in the conceptual architecture: friction as primitive, consent as derived, the kernel
triple (o, 0, €) as sufficient statistics for governance dynamics.

If empirical observation suggests alternative functional forms fit data better, the framework can
accommodate such revisions without abandoning its core conceptual structure. The phenomenological
status of F is a feature, not a bug: it signals that the framework is falsifiable and revisable in light of
evidence (see Section 6 for sensitivity analysis).

2.6 Philosophical Foundations

The axiom of consent engages with several traditions in moral and political philosophy. We position the
framework relative to these traditions, identifying points of connection and departure.

2.6.1 Relationship to Scanlon’s Contractualism

T.M. Scanlon’s contractualism (Scanlon, 1998) represents the most sophisticated contemporary attempt
to ground morality in consent-like reasoning. For Scanlon, an act is wrong if it would be disallowed by
any principle that no one could reasonably reject.

The axiom of consent shares Scanlon’s emphasis on what affected parties would accept, but diverges
in three critical respects:

First, Scanlon’s framework operates in hypothetical mode—it asks what principles would be ac-
cepted under idealized conditions of full information and mutual recognition. Our framework is empir-
ical: we observe what configurations actually produce friction and derive conclusions from structural
analysis.

Second, Scanlon’s “reasonable rejection” criterion requires specifying what counts as reasonable—
a move that reintroduces normative commitments at the foundation. Our stakes-weighting criterion is
purely structural: we measure actual stakes and actual voice, not idealized reasonableness.

Third, Scanlon seeks principles that no one could reasonably reject—a unanimity condition. Our
framework acknowledges that unanimity is typically unattainable and parameterizes the threshold 0 to
accommodate majority, supermajority, or other decision rules.

Despite these differences, the frameworks are complementary. Scanlonian contractualism provides
normative guidance about what should count as reasonable; our framework provides empirical predic-
tions about what configurations will generate friction regardless of normative evaluation.

2.6.2 The Proportionality Principle

Why weight consent by stakes? The answer lies in a principle with deep roots in political philosophy:
those who bear consequences should have proportional voice in decisions that produce them.
This proportionality principle appears across traditions:

* In democratic theory, it underlies the “all-affected interests” principle (Goodin, 2007): all those
affected by a decision should have a say in making it.

* In corporate governance, it motivates stakeholder theory: those affected by corporate decisions—
employees, communities, suppliers—should have voice proportional to their stakes.
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* In international relations, it grounds debates about who should participate in climate negotiations,

trade agreements, and global governance.

Our stakes-weighting operationalizes this principle formally. An agent with stake s; = 100 who is
excluded from decision-making contributes ten times as much to legitimacy deficits as an agent with
stake s; = 10 who is excluded. This is not an arbitrary weighting but a reflection of the proportionality
principle’s substantive content.

2.6.3 The Affected Interests Principle

Robert Goodin’s “all-affected interests” principle (Goodin, 2007) holds that all those affected by a de-
cision should have standing to participate in making it. Our framework extends this principle in two
directions:

First, we distinguish standing from voice. Having standing to participate does not guarantee effec-
tive voice. The affected set S, includes all agents with positive stakes; the legitimacy function L(d,t)
measures how much effective voice they actually possess.

Second, we operationalize “affected” through the stakes function s;(d). Rather than treating affect-
edness as binary (affected or not), we measure its magnitude. An agent whose entire livelihood depends
on a decision is more affected than one for whom the decision is peripheral.

This operationalization addresses a persistent challenge in democratic theory: how to identify the
relevant constituency for a given decision. Our answer is empirical: measure stakes, include those with
positive stakes, weight by magnitude.

2.6.4 Distinction from Unanimity Requirements

The axiom of consent might appear to require unanimity—after all, it invokes the consent of affected
parties. This interpretation would render the axiom practically useless, since unanimity is rarely achiev-
able.

We reject the unanimity reading. The axiom does not claim that every affected party must con-
sent for a decision to be legitimate. It claims that legitimacy is a function of stakes-weighted consent,
parameterized by threshold 6.

Different domains appropriately employ different thresholds:

* Constitutional amendments might require supermajority consent (6 = 0.67 or higher)
* Legislative decisions might require simple majority consent (6 = 0.5)

* Emergency decisions might permit lower thresholds when deliberation is infeasible

* Decisions affecting fundamental rights might require higher thresholds

The framework does not prescribe 0; it analyzes consequences given various 6 values. This is
another respect in which the framework is descriptive rather than normative: we predict friction patterns
under different threshold choices without insisting that one threshold is uniquely correct.

2.7 The Friction-First Methodology

We now articulate the methodological innovation at the heart of the framework: the inversion of the

traditional relationship between consent and friction.
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2.7.1 Traditional Approach: Consent Primitive, Friction Derivative

Traditional moral and political philosophy treats consent as the primitive concept. Consent is some-
thing agents possess, grant, or withhold. Friction—conflict, resistance, instability—is a derivative phe-
nomenon that arises when consent is violated.

On this traditional view:

1. Consent is structurally prior: agents have consent to give or refuse

2. Legitimacy is defined by consent: an arrangement is legitimate if agents consent to it
3. Friction is pathological: it indicates consent violation and calls for remedy

4. The goal is consent: we should seek arrangements to which all would consent

This approach faces severe difficulties. Consent is notoriously difficult to observe directly. How do
we know if consent was genuine? Informed? Uncoerced? Free from manipulation? These questions
admit no clean answers, and disputes about consent’s presence or absence prove interminable.

2.7.2 Our Approach: Friction Observable, Consent Derived

We invert the traditional hierarchy:

Methodological Inversion

Traditional: Consent — Friction (consent is primitive, friction is derivative)
Friction-First: Friction — Consent (friction is observable, consent is derived)

On the friction-first approach:

1. Friction is observable: We can detect friction directly through behavioral indicators—protest,
exit, litigation, noncompliance, sabotage, violence

2. Friction is measurable: We can quantify friction through proxies—turnover rates, litigation fre-
quency, shadow economy size, emigration, regulatory reversals

3. Consent is pattern-description: “Consent” describes certain low-friction configurations; it is not

a metaphysical property but an empirical pattern

4. The goal is friction-minimization: Rather than seeking unattainable perfect consent, we seek

configurations that minimize destructive friction

This inversion has several methodological advantages:

Observability. We can observe friction directly through its behavioral manifestations. We cannot
observe consent directly; we can only infer it from behavior and testimony, both of which are unreliable.

Measurability. Friction admits quantification through multiple proxies. Different friction types—
corresponding to Hirschman’s exit, voice, and loyalty categories (Hirschman, 1970)—can be tracked
empirically. Consent, by contrast, resists quantification—what would it mean to measure “0.7 units of
consent”?

Neutrality. Friction measurement requires no normative judgments. We observe that friction occurs
without evaluating whether it is “justified.” This descriptive stance enables empirical research without
begging normative questions.
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Universality. Friction appears in all shared domains regardless of cultural context. Disagreements
about abortion, taxation, territorial boundaries, algorithm design, and family relationships all generate
friction. The content differs; the dynamic is constant.

Substrate-agnosticism. The friction-first approach applies to any system with multiple agents and
shared outcomes—humans, institutions, algorithms, hybrid systems. We need not resolve debates about
who possesses the metaphysical capacity for consent; we simply observe friction patterns wherever they
occur.

2.7.3 Empirical Tractability

The friction-first methodology enables empirical research that consent-first approaches cannot support.
Consider the testable predictions that emerge:

1. Legitimacy-friction correlation: Domains with lower stakes-weighted voice exhibit higher fric-
tion indicators (protest, litigation, exit).

2. Reconfiguration effects: Reforms that increase alignment between consent-holding and stakes
reduce friction.

3. Duration effects: Longer consent-holding durations predict greater friction upon reconfiguration
(via the belief-transfer mechanism developed in subsequent sections).

4. Threshold effects: Friction increases discontinuously when legitimacy falls below critical thresh-
olds.

These predictions are falsifiable. We can measure stakes distributions, voice allocations, and friction
indicators across domains and jurisdictions. We can track changes over time following institutional
reforms. We can compare predictions with observed outcomes.

This empirical tractability distinguishes the axiom of consent framework from purely philosophical
approaches. We offer not only conceptual analysis but a research program with testable implications.

2.7.4 The Asymptotic Horizon

The friction-first approach reconfigures what “consent” means. Rather than a binary property that ar-
rangements possess or lack, consent becomes an asymptotic horizon—a limit approached but never
reached.

Perfect consent would require:

* Complete information (all affected parties know all relevant facts)

* Perfect communication (preferences are fully expressed and understood)
* Zero coercion (no party faces undue pressure)

* Full participation (all affected parties are included)

* Dynamic updating (consent tracks changing preferences)

No actual arrangement satisfies these conditions. Every consent is partial, imperfect, provisional.
The question is never “was consent achieved?” but “how close did this configuration come?”

This asymptotic framing avoids the false binary that plagues consent discourse. We need not deter-
mine whether consent was “really” given; we can measure how much friction the configuration gener-
ates and compare it to alternatives. The direction matters—movement toward the consent horizon—even
when arrival is impossible.
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Table 1: The Kernel Triple Across Scales

Component Symbol Interpretation Empirical Proxies

Alignment o Correlation of target functions Survey congruence, revealed preference
Stake (o) Magnitude of optimization at risk Tax burden, employment dependence
Entropy £ Information loss in consent transfer Transparency indices, misperception scores
Friction F System tension Protest frequency, litigation rates
Legitimacy L Stakes-weighted voice Franchise breadth, stakeholder inclusion

The framework’s parsimony lies in this kernel triple: alignment, stake, and entropy. From these
three measurable quantities, we derive friction and legitimacy. The same structure appears at every
scale—from interpersonal relationships to international institutions—with scale-specific interpretations
but invariant mathematical form.

This concludes the formal statement of the axiom of consent. In subsequent sections, we develop
its dynamic implications and evolutionary mechanics (Section 4), and demonstrate applications across

domains (Section 5).

3 The Kernel Triple Formalism

The axiom of consent provides a static characterization of legitimacy: voice should track stakes, medi-
ated by alignment and entropy. But governance is dynamic—configurations evolve, institutions trans-
form, norms shift. How does friction change over time? Under what conditions do consent-respecting
arrangements emerge, persist, or dissolve? To answer these questions, we require a dynamical treatment
that maps the axiom’s core concepts onto evolutionary mechanics.

This section introduces the kernel triple formalism—the mathematical apparatus connecting the ax-
iom’s (@, 0, €) structure to replicator-mutator dynamics via a scale-relative parameterization (ps, ws, Ms) (Hof-
bauer and Sigmund, 1998; Nowak, 2006). The key insight is structural: the axiom’s alignment-stake-
entropy triple instantiates directly into the survival-weight-mutation kernel governing type dynamics.
Consent-respecting configurations are not imposed by fiat but emerge as attractors under selection pres-

sure.

3.1 Motivation: From Statics to Dynamics

The friction function (Eq. 6) characterizes tension at a point in time. But political reality is evolu-
tionary: revolutionary movements gain adherents or dissipate; institutional reforms propagate or stall;
governance norms spread or contract. A purely static framework cannot address the central question of
political theory: why do some arrangements persist while others collapse?

Three considerations motivate the dynamical extension:

Temporal evolution. Friction is not constant. As stakes shift, information flows change, and align-
ments drift, the friction landscape transforms. A configuration that minimizes friction today may become
untenable tomorrow. We require equations governing dF /dt.

Types, not individuals. Political dynamics operate at multiple scales simultaneously. Individual
preference changes matter, but so do institutional reforms, cultural shifts, and paradigm transitions. A
statistical-mechanics approach—tracking distributions over types rather than individual trajectories—
provides the appropriate level of abstraction. This parallels the move from Newtonian mechanics (indi-
vidual trajectories) to thermodynamics (ensemble distributions) in physics.

Scale-relativity. Different observables become relevant at different resolutions. The voter and the
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polity occupy different scales; describing both requires scale-relative primitives. The atomic unit itself

must become a parameter, not a fixed assumption.

3.2 The Scale-Relative Kernel

We formalize the notion of scale and the parameters defined relative to it.
Definition 3.1 (Scale). A scale S specifies:
(1) A type space Ts—the set of distinguishable configurations at scale S
(i) An observable algebra &’s—the measurable quantities at scale S
(iii) A resolution parameter rg > 0—the characteristic spatiotemporal granularity

Scales are observer-relative measurement choices, not objective features of reality. The same system
admits description at multiple scales, with different scales revealing different dynamics. At agent scale,
the atomic unit is an intentional agent; at institutional scale, the atomic unit is an institution; at cultural
scale, the atomic unit is a belief system or practice.

Definition 3.2 (Atomic Agent). Given scale S, the atomic agent Atomg is the minimal unit of analysis—
the entity treated as indivisible for purposes of description at that scale. Atomicity is not ontological

fundamentality but resolution-relative non-decomposition.

This scale-relativity principle distinguishes the formalism from domain-specific applications. We are
not claiming that “everything is selection” as metaphysics, but that many domains admit a selection-
transmission description once one chooses appropriate scale-relative parameters. Recent work on evo-
lutionary stability (Porter and Wikman, 2026) provides formal conditions under which such consent-
holding configurations resist invasion by alternative arrangements, connecting the kernel triple’s dy-
namical predictions to the classical stability theory of evolutionary game theory.

3.3 The Trlple (ps,WS,Ms)

At each scale S, dynamics are governed by three functions constituting the kernel triple.

Definition 3.3 (Survival Function). The survival function py : Ts x %5 x A(Ts) — [0, 1] maps a type T,
an interaction network G € %, and a population state p € A(Ts) to a survival probability:

pS(T7G7p) € [Oal] (10)

The survival function captures frequency-dependent and density-dependent selection: a type’s persis-
tence probability depends on what other types exist and how they interact.

Definition 3.4 (Weight Function). The weight function wg : Ts — R assigns to each type its intrinsic
weight—baseline replication capacity or resource access:

ws(T) >0 (11)

Weight captures advantages that persist regardless of competitive context: structural resource access,
incumbency effects, network centrality advantages.
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Definition 3.5 (Mutation Kernel). The mutation kernel Mg : Ty x Tg — [0, 1] specifies transmission
probabilities:
Ms(7" — t) = Pr(type T produced from 1) (12)

Row-stochasticity requires Y.z, Ms(t' — 7) = 1 for all 7/. The mutation kernel captures imperfect
transmission: copies diverge from originals, reforms produce unintended variants, imitation introduces
errors.

The kernel triple (ps, ws, Ms) provides a complete parameterization of selection-transmission dynamics
at scale S. Different domains instantiate different kernel functions:

Table 2: Scale-Specific Instantiations of the Kernel Triple

Scale Atomg Ps (Survival) Mg (Mutation)

Cellular Cell Replication rate Point mutation, horizontal transfer
Organism Individual Darwinian fitness Genetic recombination

Agent Intentional agent  Strategy payoff Learning, imitation

Institutional Institution Legitimacy/(1+ Friction) Reform, evolution

Cultural Belief/practice Transmission X retention  Copying error, reinterpretation

3.4 The ROM Update Equation

The kernel triple governs temporal evolution through the replicator-optimization mechanism (ROM)
equation (Farzulla, 2025g).

Theorem 3.1 (Type Dynamics). Given scale S with type space Ts, kernel triple (ps,ws,Ms), and popu-
lation distribution p, € A(Ty), the temporal evolution of type frequencies is:

dp:i(t
dt

)2 Y b () - ws(¥) - ps(¥'\Gssopr) -Ms(t' = ) — pi(2) - (13)

T'eTy

where the mean fitness ¢ = ¥.pcq, pi(T') - ws(T') - ps(7',Gs,, pr) normalizes the dynamics, ensuring
Y :dp:(7)/dt = 0 and preserving the probability simplex.

The ROM equation is not novel—it is the weighted replicator-mutator equation, well-established in
evolutionary game theory (Hadeler, 1981; Page and Nowak, 2002). What is novel is the explicit ker-
nel parameterization enabling systematic cross-domain instantiation, and the specific consent-friction
instantiation we develop below.

Interpretation of components:

* p:(7'): Prevalence of type 7’ at time ¢ (population share)

* ws(7'): Intrinsic weight of 7’ (resource advantage)

* ps(7',G, p): Survival probability of 7’ given network and population state
* Mg(t' — 7): Probability that 7’ produces 7 in transmission

* ¢: Mean fitness, ensuring normalization

The first term sums over all types that could produce 7 via transmission, weighted by prevalence,
intrinsic weight, survival, and transmission probability. The second term removes the current proportion
of 7T at rate equal to mean fitness. Types with above-average effective fitness (product of weight, survival,
and transmission to self) increase in frequency; those below average decrease.
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3.5 Consent Instantiation: Mapping (¢, 0,€) to (p,w,M)

The axiom of consent defines friction in terms of alignment (), stake (o), and entropy (€). The ker-
nel triple provides the dynamical scaffolding. The central theoretical contribution is establishing the

structural correspondence between these formalisms.

Definition 3.6 (Consent-Weighted Survival). In the consent domain, the survival function takes the
legitimacy-friction form:

L(7)
1+F(7)

where L(7) is the legitimacy of configuration 7 (distributional match between stakes and voice) and F (1)

PN (3,G,p) = (14)

is the friction generated by 7.

This functional form ensures that survival increases with legitimacy and decreases with friction. Con-
figurations with perfect legitimacy (L = 1) and zero friction (F = 0) achieve p = 1. Configurations
with zero legitimacy achieve p = 0 regardless of friction. The denominator (1 + F) bounds survival
probability appropriately.

Definition 3.7 (Consent-Friction Mapping). The axiom’s terms map to kernel components as follows:

Axiom Term Kernel Term Interpretation

« (alignment) Encoded in ps Higher alignment — higher survival; align-
ment enters friction function inversely, thus
survival positively

o (stake) wg (weight) Stakes determine influence on dynamics;
higher stakes — larger weight in evolution-
ary pressure

€ (entropy) My (mutation) Information loss as type transition probabil-
ity; high entropy — increased transmission
noise

The correspondence is not metaphorical but structural. Alignment enters the survival function through
friction: from Eq. 6, F =< (1+¢)/(1+ @), so high alignment reduces friction and increases ps = L/(1+
F). Stakes operate as weights: configurations affecting high-stakes agents exert proportionally larger
selection pressure. Entropy operates as mutation: information loss in consent transfers manifests as
noisy transmission of institutional templates.

3.5.1 Stake as Weight

The mapping ¢ — wg requires elaboration. In the axiom, stakes s;(d) quantify an agent’s sensitivity to
outcomes in domain d. In the kernel formalism, weights wg(7) quantify a type’s baseline replication
capacity.

The connection operates through aggregation. For a configuration (type) 7 representing a governance
arrangement:

ws(T) = Z s; - 1[i supports persistence of 7] (15)
ieStakeholders ()

High-stakes stakeholders supporting an arrangement contribute more to its evolutionary weight.
This captures the empirical observation that institutions with powerful supporters persist longer, ceteris
paribus. The weight function thus aggregates individual stakes into type-level evolutionary advantage.
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3.5.2 Entropy as Mutation

The mapping € — My captures how information loss affects institutional transmission. When consent-
holders imperfectly understand delegator preferences (high €), the policies they implement diverge from
intended outcomes. This divergence is structurally equivalent to mutation in transmission.

Formally, the baseline mutation kernel My(7' — 7) is modulated by entropy:

Ms(T — 1) =Mo(7' = 1) (1+1-&(7")) (16)

where &(7’) is the average entropy across agents in configuration 7’ and A > 0 scales the effect. High en-
tropy increases off-diagonal elements (transitions away from 7’), reflecting that information-impoverished
configurations produce more transmission errors.

After modulation, row-stochasticity must be restored:

Mg(T — 1)

Mg(T — 1)
s( ) Yo Mg(t — ")

(17)

3.5.3 Alignment as Survival Modulator
Alignment enters survival through the friction function. Recall the friction function (Definition 2.4):

1+¢€(7)
Flt)=Y s ——% 18
(1) l_gs (o) (18)

The inverse dependence on alignment ensures that configurations with high consent-holder/stakeholder
alignment generate lower friction and thus higher survival probability. We can express this modulation
explicitly:

p§onsent(f) — pgase(l’) cexp(—A-F(1)) (19)
base

where p¢**° is a baseline survival function and A > 0 scales friction’s effect. This exponential sup-
pression form ensures:

* ps > 0 for all finite friction
* ps — 0 as friction diverges
* Smooth interpolation between low and high friction regimes

3.6 Network Structure and Alignment Operationalization

The alignment function o captures correlation between consent-holder and stakeholder utilities. In prac-
tice, operationalizing o requires decomposing the utility correlation structure into interpretable compo-
nents. The Local-Global (LoGo) decomposition from network science provides this operationalization.

3.6.1 The LoGo Decomposition

Consider the correlation matrix C of stakeholder utilities, where C;; = corr(U;,U;). Rather than treat-
ing this as an unstructured matrix, we decompose it into hierarchical components reflecting network

topology.

Definition 3.8 (Local-Global Alignment Decomposition). The aggregate alignment o¢ decomposes as:
O = O, - Wocal + OG Oglobal (20)
where:
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* Olocal: Within-cluster utility correlation (agents with shared local interests)
* Oglobal: Cross-cluster backbone correlation (system-wide alignment on common objectives)
* W, Wg: Weights determined by network modularity, with @ + wg = 1

High modularity networks (many isolated clusters, weak cross-cluster links) imply @y, > ®g, so align-
ment is dominated by local coordination. Low modularity networks (hierarchical backbone, strong
cross-cluster integration) imply g > @y, so alignment depends on system-wide consensus.

3.6.2 Interpretation for Consent Dynamics

The LoGo decomposition reveals why some governance arrangements generate persistent friction de-
spite apparently high local consent. When Qfjoca) is high but Qgjopal is low, consent-holders may achieve
legitimacy within their immediate constituency while generating friction with disconnected stakeholder
groups.

Proposition 3.2 (Modular Governance Fragility). In high-modularity networks (wp ~ 1), governance

arrangements stable under local metrics exhibit fragility to cross-cluster shocks:

oF  —o(l+e)
aO‘gl(}bal (1 + a)2

- QG (21

Small modularity reduction (increasing Wg) can precipitate large friction increases if Ogiopal < Qocal-

This explains governance crises following integration: when previously isolated stakeholder groups
become connected (through technology, migration, or institutional reform), hidden global misalignment
becomes salient. The LoGo framework thus operationalizes o while providing predictive structure about
friction dynamics under network evolution.

3.7 The Unification: Isomorphism of Structure

The central claim of this section is now statable precisely.

Theorem 3.3 (Axiom-Kernel Correspondence). The axiom of consent’s kernel triple (&, 0, €) and the
ROM kernel triple (ps,ws,Ms) are structurally isomorphic under the consent-friction instantiation.
Specifically:

(i) Alignment-Survival: o enters pgs through the friction function; higher alignment yields higher
survival probability via ps = L/(1+F) where F < (1+¢€)/(1+ ).

(ii) Stake-Weight: o determines ws, aggregate stakes of supporting stakeholders constitute the type’s
evolutionary weight.

(iii) Entropy-Mutation: € modulates Ms; information loss increases transmission noise, widening the

mutation kernel’s dispersion.

Proof sketch. The correspondence follows from the definitions. For (i): substituting F = o(1+¢)/(1+
o) into ps = L/(1 + F) yields survival as a function of alignment. For (ii): weighting type dynamics
by stakeholder stakes is precisely the ROM weight function’s role. For (iii): entropy’s information-
loss interpretation matches mutation’s imperfect-transmission interpretation; both increase variance in
type production. The structural isomorphism holds because both formalisms decompose the same
phenomenon—consent-weighted persistence—into the same three components, viewed from static (ax-
iom) and dynamic (kernel) perspectives. | |
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This unification is the key theoretical contribution. It shows that the axiom of consent is not merely a
normative principle but has dynamical implications: consent-aligned configurations are evolutionarily
favored. “Ought” connects to “is” not through logical derivation but through selection: what persists is
constrained by what generates less friction.

3.8 Properties of the Consent-Kernel Dynamics

We now establish formal properties of the consent-friction instantiation.

Proposition 3.4 (Consent-Aligned Survival Advantage). Under the consent-friction instantiation, types

with higher consent alignment exhibit higher survival probability:
a(t) > a() = ps(t1) > ps(n2) (22)

holding stakes, entropy, and legitimacy constant.

Proof. From Egq. 6, friction F o< (1 +¢€)/(1 + ). For fixed €, increasing a decreases F. From Eq. 14,
ps =L/(1+4 F). Decreasing F (with L held constant) increases ps. [ | |

Proposition 3.5 (Friction as Selection Pressure). Friction acts as negative selection pressure on type

prevalence. Types generating high friction decrease in frequency, ceteris paribus:

9 [dp(v)
8F(T)[ dt ]<O 23)

Proof. The ROM equation yields dp,(7)/dt proportional to ps(7) —p. Since ps=L/(1+F), dps/dF =
—L/(1+ F)? < 0. Higher friction reduces survival, reducing the growth rate differential. | ]

Proposition 3.6 (Consent Equilibrium Convergence). Under ergodicity conditions (irreducible, ape-
riodic mutation kernel; bounded survival function), the system converges to a stationary distribution
p* satisfying detailed balance. In the consent domain, p* assigns higher mass to consent-respecting
configurations.

Proof sketch. Standard results on replicator-mutator dynamics (Page and Nowak, 2002) establish exis-
tence of stationary distributions under ergodicity. The mutation kernel’s irreducibility ensures all types

are accessible; aperiodicity prevents cycles. The stationary distribution p* satisfies Y. p* (7" )w(7')p (7" )M (7’

4)
7) = p*(t)¢* for all 7. Since consent-respecting types have higher ps, they receive higher mass at equi-
librium. Full proof requires specifying regularity conditions on L, F, and M; see Farzulla (2025g) for

technical details. [ | |

3.9 The Belief-Transfer Extension

A distinctive feature of the consent-friction instantiation is the belief-transfer mechanism: consent-
holding duration affects subsequent dynamics. When an agent holds consent over a domain for extended
periods, their subjective perception shifts from “holding consent for d” toward “owning authority over
d.” This psychological ownership accumulates over time and affects the mutation kernel.

Definition 3.9 (Ownership Accumulation). The ownership-perception O4(d,¢) € [0,1] of agent A over

domain d evolves as:
dOy

dt

where 8 > 0 is the transfer rate.

B - (1 —04) - 1]A holds consent for d] (24)
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This logistic-type equation ensures ownership saturates at 1 for long-tenure consent-holders. The accu-
mulation rate § may vary with domain sensitivity, institutional design, or cultural context.

Definition 3.10 (Ownership-Modulated Mutation). Ownership perception modulates the mutation ker-
nel:
Ms(t — 1) = My(7' — 1) -exp (=7 (0(7) — O(7))) (25)

where O(7) is average ownership-perception in configuration T and y > 0 is the entrenchment parameter.
This modulation creates two effects:

1. Entrenchment: Transitions away from high-ownership configurations are suppressed (the expo-
nential is negative when O(7’) > O(7)).

2. Reform resistance: Incumbents with accumulated ownership resist transitions that would reduce
their authority.

The Arrhenius-like exponential form ensures transitions remain possible but increasingly difficult
with ownership accumulation. This generates the prediction that regime transition probability decreases
exponentially with incumbent tenure—a testable distinction from generic “institutional stickiness” ex-
planations.

3.10 Coarse-Graining and Scale Transitions

The scale-relativity of the kernel triple raises the question of how dynamics at one scale relate to dynam-

ics at another. The coarse-graining operator formalizes this relationship.

Definition 3.11 (Coarse-Graining Operator). For scales S (fine) and S’ (coarse), the coarse-graining
operator 7s_s : A(Ts) — A(Ty) maps fine-grained type distributions to coarse-grained distributions.

Properties:

1. 7 is surjective but not injective (information loss)

2. Transitivity: Tg_,g» = Ty _,57 O Tg_, g/

The central question is whether ROM structure is preserved under coarse-graining. This is not gen-
erally guaranteed—projecting dynamics onto coarser state spaces can introduce memory effects (Mori-
Zwanzig structure) that break the Markovian replicator-mutator form.

Theorem 3.7 (Lumpability Conditions). ROM structure is preserved under coarse-graining @ : Ts — Ty
if and only if:

(i) Transition uniformity: For all T;, 7 € Ts with n(t;) = n(t), and all macro-types T' € Ty :

Y Ms(n—t)= ) Mi(u-—1) (26)

tjm(t;)=T" T:n(h)=T"

(ii) Survival homogeneity: ps(7;) = ps(Tc) whenever (7;) = m(T).
Under these conditions, the coarse-grained dynamics satisfy ROM with kernel (pg/, ws, Mg ') where:

* ps(T) = ps(7) forany 7 € T (well-defined by condition ii)
* wy(T) =Y erws(7)p(7|T) (weighted by conditional distribution)
e Mg inherits transition rates from Mg
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When lumpability fails, the coarse observer sees dynamics that appear non-Markovian—history-
dependence emerges from integrating out fine-grained degrees of freedom. This connects to the Mori-
Zwanzig formalism in statistical mechanics (Zwanzig, 1960) and explains why “emergence” appears
mysterious: it is what coarse-graining looks like when lumpability conditions fail.

3.11 Summary: The Kernel Triple as Dynamical Backbone

This section established the kernel triple formalism connecting the axiom of consent to evolutionary
dynamics. The key results are:

1. Scale-relative parameterization: The kernel triple (ps,ws, Ms) provides domain-general appa-
ratus for selection-transmission dynamics at any scale.

2. Consent instantiation: The axiom’s (a, 0, €) maps structurally onto (ps, ws, Ms) via:

* Alignment entering survival through the friction function
* Stakes determining evolutionary weight
* Entropy modulating the mutation kernel

3. Selection for consent: Consent-respecting configurations exhibit higher survival probability; fric-
tion acts as negative selection pressure.

4. Belief-transfer dynamics: Ownership accumulation modulates the mutation kernel, generating
entrenchment effects and testable predictions about tenure-transition relationships.

5. Scale coherence: Under lumpability conditions, ROM structure is preserved across scales; when
conditions fail, apparent emergence arises from coarse-graining.

The kernel triple provides the dynamical backbone for the axiom of consent. What remains is to
examine its empirical implications (Section 6) and domain-specific applications (Section 5).

Full technical details, proofs, and computational validation appear in the companion paper (Farzulla,
2025g).

4 Core Dynamics

The kernel triple formalism established in Section 3 maps the axiom’s static characterization onto evolu-
tionary mechanics. We now develop the full dynamical treatment: how friction evolves, how legitimacy
changes, and what equilibrium properties emerge. The central result is that consent-respecting config-
urations are not normative ideals imposed from without but attractors under selection pressure—what
persists is constrained by what generates less friction.

4.1 The ROM Equation: Generalized Replicator-Mutator Dynamics

We begin by situating the ROM (Replicator-Optimization Mechanism) equation within the broader land-
scape of evolutionary dynamics, then establish its consent-specific instantiation.

4.1.1 Connection to Standard Replicator Dynamics

The classical replicator equation (Taylor and Jonker, 1978) governs frequency dynamics in populations

under selection:
dp,(7)
dt

= pi(7) [7(7, pr) — 7(p1)] (27)
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where 7(7, p;) is the payoff to type T given population state p;, and &(p,) = Y. p:(7")7(7’, p;) is mean
population payoff. Types with above-average payoff increase in frequency; those below average de-
crease.

The replicator-mutator extension (Hadeler, 1981; Page and Nowak, 2002; Traulsen and Hauert,
2009; Metz et al., 1996) incorporates imperfect transmission, and recent work by Shen et al. (2026)
extends these dynamics to reputation-based voluntary participation games where agents can choose
whether to engage—a mechanism formally analogous to consent withdrawal in the present framework:

d t / —
” zpt (7', pr)-Ms(¢ = ©) — p,(1) - %(py) (28)

The first term sums over all types that could produce 7 via transmission with probability M(t" — 1),
weighted by payoff. The second term maintains normalization.
The ROM equation (Farzulla, 2025g) generalizes this framework through three innovations:

1. Decomposed fitness: Rather than a monolithic payoff 7, fitness decomposes into weight wg(7)
(intrinsic resource access) and survival ps(7,G,p) (frequency- and density-dependent persis-
tence).

2. Network dependence: Survival depends on the interaction network Gs;, not merely population
frequencies.

3. Scale parameterization: All components are explicitly indexed by scale S, enabling systematic
cross-scale analysis.

Definition 4.1 (ROM Equation). The Replicator-Optimization Mechanism governing type dynamics
at scale S is:

LA Y ) ps(. G pr) - Ms(T — ) — pil(7) -6, (29)

T eTy

where ¢ =Y o p:(7') - ws(7') - ps(7’, Gs,, p:) is mean effective fitness.

The product ws(7') - ps(7’, G, p) replaces the payoff function 7 of classical replicator dynamics. This
decomposition is not merely notational—it enables consent-specific instantiation where weight encodes
stakes and survival encodes alignment-modulated legitimacy.

4.1.2 Consent-Specific ROM Instantiation

Under the consent-friction instantiation developed in Section 3.5, the ROM equation becomes:

Theorem 4.1 (Consent-Friction ROM). With kernel components instantiated as:

ws(T) = Z s; - 1[i supports 7| (30)
i€Stakeholders(T)
L(T)
1,G, — 31
Ms(t" — T) o< My(7' —>r)-(1+lé(‘c’)) (32)
the ROM equation becomes:
dpz L(7) _
L) o) gy M D )6 (33)
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where 6(T') = Licsrakeholders(t) Si 1S total stake and ¢ normalizes.

This equation governs the evolutionary dynamics of consent-holding configurations. Configurations
with high legitimacy L and low friction F achieve higher survival probability; those with high stakes
o from supporting stakeholders achieve higher weight. Together, these determine which configurations
persist.

4.1.3 Connection to Learning Dynamics Literature

The ROM equation is a weighted replicator-mutator system (Hadeler, 1981; Page and Nowak, 2002).
This connection is substantive, not merely notational. Recent work on learning dynamics in games (Pan-
gallo et al., 2022; Galla and Farmer, 2013) demonstrates that convergence to equilibria is non-generic:
most games produce cycles, chaos, or limit sets of positive measure rather than stable fixed points.

Galla and Farmer (2013) establish that even in simple two-player games, reinforcement learning
dynamics exhibit deterministic chaos when the game matrix satisfies mild heterogeneity conditions.
Pangallo et al. (2022) extend this to generic n-player games, showing that the best-response structure
typically admits no globally attracting equilibria. These results suggest that evolutionary stability is the
exception rather than the rule.

The consent-friction instantiation achieves convergence where generic games fail through two mech-

anisms:

1. Potential structure: The legitimacy-weighted survival function ps = L/(1 + F) creates a quasi-
potential landscape. Rather than arbitrary payoff matrices, the consent-friction fitness is derived
from the scalar friction function, inducing approximate gradient flow dynamics. Configurations
descend the friction surface rather than cycling through payoft-indifferent regions.

2. Mutation regularization: The entropy-modulated mutation kernel Mg provides regularization,
smoothing the fitness landscape and preventing the discontinuous best-response dynamics that
generate chaos in standard learning. The kernel ensures that type transitions are probabilistic
rather than deterministic, damping the oscillatory modes that Galla and Farmer identify as chaos
sources.

This explains why consent-respecting configurations emerge as attractors: they occupy basins in a
friction-derived potential landscape, while misaligned configurations occupy saddles or repellers. The
ROM framework inherits the mathematical structure of evolutionary game theory while avoiding its
generic convergence failures through the specific functional form of consent-friction fitness.

4.2 Friction Dynamics

The friction function (Eq. 6) characterizes tension at a point in time. Political reality is dynamic: stakes
shift, alignments drift, information channels open and close. We develop the temporal dynamics of
friction.

4.2.1 The Friction Equation
From Definition 2.4, friction is F = 6 (1 +€)/(1+ a) (Eq. 6). Differentiating with respect to time:

Proposition 4.2 (Friction Evolution). The temporal evolution of friction is governed by:

dFF dFdo JFda  JF de

di oo di Toadr Toear (34
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Substituting partial derivatives from Propositions 2.2-2.4:

dF  l+edo G(l+8)d0€+ c de (35)
dt  l+adt (1+a)?dt 1+adt
Proof. Direct application of the chain rule to Eq. 6:
IF _l+e
Jo  l+a
oF __oli+e)
da  (1+a)?
oF_ o
de  l1+a
Substitution into the total derivative yields the result. ] |

This equation reveals the levers of friction change:

* Stake dynamics (do/dr): Entry of new stakeholders increases friction; exit decreases it. The co-
efficient (1+¢)/(1+ a) implies that stake changes matter more when entropy is high or alignment
is low.

* Alignment dynamics (do/dt): Improved alignment reduces friction; the negative coefficient
reflects the friction-reducing effect of consent. The quadratic denominator implies that alignment
improvements near the @ — —1 pole have disproportionate effect.

* Entropy dynamics (d¢/dt): Improved information transmission (decreasing €) reduces friction.
Transparency initiatives, deliberation, and communication infrastructure all operate through this
channel.

4.2.2 Stability Analysis

We analyze the stability of friction equilibria.

Definition 4.2 (Friction Equilibrium). A friction equilibrium is a configuration (o™, a*, €*) such that
dF /dt = 0.

Proposition 4.3 (Equilibrium Conditions). A friction equilibrium obtains when:

l+e"do o'(1+¢")da o' de
I+a*dt  (1+o*)? dt  1+a*dt

(36)
That is, friction stabilizes when stake growth is exactly offset by alignment improvements and entropy
reduction.

Theorem 4.4 (Friction Stability). Ler (a(1),0(t),€(t)) evolve continuously with o € (—1,1], o >0,
€ €[0,1]. Friction F =o(1+¢€)/(1+4 &) satisfies dF /dt <0 if and only if:

do o de o do
<

e S1radr 37

Equivalently: friction decreases when the growth rate of the numerator 6 (1 + €) does not exceed the

growth rate of the denominator (1+ o).

Corollary 4.5 (Sufficient Conditions for Friction Decrease). Any of the following implies dF /dt < 0:
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(i) Stakes non-increasing, entropy non-increasing, alignment non-decreasing: do /dt <0, de/dt <0,
da/dt >0

(i) Logarithmic growth bound: 41n[o(1+¢€)] < £1n(1+ a)

Proof of Theorem 4.4. From the chain rule, dF /di = {£4¢ — Z(L20 4% 4 10 4¢ Multiplying by (1 +

o)/(1+ €) > 0 and rearranging yields (37) as necessary and sufficient. [ | [ |

Remark 4.3 (Why “Bounded Stakes” Is Insufficient). An earlier formulation claimed bounded stakes
suffice for stability. This is false: stakes can approach a bound while still growing (do /dt > 0), con-
tributing positively to dF /dt and potentially overwhelming alignment improvements. The corrected
condition (37) makes explicit that governance adaptation rate must scale with stakeholder growth rate—
a design principle explaining why rapid scaling often degrades governance quality even when intentions
remain good.

This theorem provides precise conditions under which consent-respecting configurations emerge as at-
tractors: when alignment improvement outpaces the combined growth of stakes and entropy, friction
decreases monotonically.

4.3 Legitimacy Evolution

Friction characterizes tension; legitimacy characterizes acceptance. We develop the connection between
these concepts and their co-evolution.
4.3.1 The Legitimacy Function

From the Doctrine of Consensual Sovereignty (Farzulla, 2025b), legitimacy quantifies the degree to
which effective voice tracks stakes:

Definition 4.4 (Legitimacy). The legitimacy of a consent-holding configuration in domain d at time ¢

is:
Yics, si(d) - eff_voice;(d,1)

ZiGSd Si (d)

where S; = {i : si(d) > 0} is the affected set and eff_voice; € [0,1] is agent i’s effective voice over

L(d,1) = (38)

domain d.

Legitimacy is the stake-weighted mean of effective voice. When all stakeholders have voice propor-
tional to stakes, L = 1. When voice is concentrated among low-stake agents while high-stake agents are
excluded, L < 1.

4.3.2 Legitimacy-Friction Relationship

The relationship between legitimacy and friction is inverse but not symmetric.
Proposition 4.6 (Legitimacy-Friction Coupling). Legitimacy and friction are related by:

L(7)

T 1+F(7) %

ps(7)
where ps(T) is survival probability for configuration T. High legitimacy increases survival; high friction
decreases it.

This coupling ensures that configurations cannot achieve high survival through legitimacy alone if they
generate substantial friction, nor can they persist through low friction alone if they lack legitimacy. Both
conditions are necessary for evolutionary success.
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4.3.3 Legitimacy Dynamics

Theorem 4.7 (Legitimacy Evolution). Under the consent-friction dynamics, legitimacy evolves accord-

ing to:
d(eff_voice; eff_voice; — L ds;
= _ Z (eff— i) 4 Z ﬁ—ilil (40)
dt i€Sy Z] Sj dr icSq Ljs; dt
voice dynamics stake reweighting
Proof. Apply the quotient rule to Eq. 38. Let N =Y ;s; - eff_voice; and D =Y ;s;. Then:
dL _1dN N 4D
dr D dt D? dt
eff voice; ) . ds; dsj
ff i— | - =
< +eft_voice; i ) ; at
Z eff voice; ) Z eff_voice; — L ds;
: : D dt
which is the stated result. | |

The two terms have distinct interpretations:

* Voice dynamics: Legitimacy increases when agents gain effective voice, weighted by their stakes.
Democratic reforms, franchise expansion, and stakeholder empowerment operate through this
channel.

» Stake reweighting: When agents with above-average voice (eff_voice; > L) gain stakes, legiti-
macy increases. When agents with below-average voice gain stakes, legitimacy decreases. This
captures the legitimacy crisis that emerges when new stakeholders enter without corresponding
voice.

4.4 Key Theorems
We now establish the central theoretical results of the consent-friction framework.
4.4.1 Theorem: Consent-Holding Necessity

Theorem 4.8 (Consent-Holding Necessity). In any domain d where a non-null outcome obtains, there
exists at least one agent A such that A holds consent over d. That is, consent-holding is a structural

invariant of multi-agent coordination, not a contingent feature of particular arrangements.

Proof. Suppose domain d produces outcome o # &. By the definition of domain, d is a locus of decision
where actions affect outcomes. Since o obtains, some action a was executed (even “doing nothing” is an
action with consequences).

For action a to occur, some selection procedure 7 determined a from the space of possible actions
;. This procedure & may be:

» Concentrated: a single agent decides

* Distributed: multiple agents jointly decide

* Encoded: an algorithm or rule determines the outcome
* Random: a stochastic mechanism selects

In each case, some locus of control H(d) determines which procedure applies. Even if 7 is “let
randomness decide,” the meta-decision to permit randomization was made by some agent. Define this
locus as the consent-holder.
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Therefore, JA : A = H(d), the consent-holder for domain d. [ [ |

This theorem establishes that disputes about consent are never about whether consent-holding exists, but
about who holds it and whether that holding is legitimate. The axiom of consent is not a normative ideal
but a structural reality.

4.4.2 Theorem: Inevitable Friction

The next theorem is our “impossibility” result, connecting to Arrow’s tradition in social choice.

Theorem 4.9 (Inevitable Friction). For any domain d with |S;| > 2 (at least two stakeholders) and het-

erogeneous preferences, there exists no consent-holding configuration achieving F(d) = 0 with 6(d) >

0.

Proof. From Proposition 2.1, F = 0 requires 6 = 0. But 6(d) = Ycs, si(d), and Sg = {i : s;(d) > 0} by
definition. Therefore |S;| > 2 with positive stakes implies o (d) > 0.
Contradiction. Therefore no configuration achieves F = 0 when |S;| > 2 and ¢ > 0. n |

Corollary 4.10 (Irreducible Friction). The minimal achievable friction in domain d with positive stakes
is: @)
(o3
Fmin(d) = T (41)

achieved when oo =1 (perfect alignment) and € = 0 (zero entropy).

Proof. Substitute o = 1,€ = 0 into Eq. 6:

1+0 o
Frin=0" m = 5
This is the global minimum since dF /da < 0 and dF /de > 0. [ | [ |

The irreducible baseline ¢ /2 represents the coordination cost of delegation—the minimal friction in-
herent in having any consent-holder at all. Even perfectly aligned agents with perfect information incur
transaction costs. This is not a design flaw but a structural feature of collective decision-making.

Remark 4.5 (Connection to Arrow’s Impossibility). Arrow’s theorem (Arrow, 1951) demonstrates that
no social welfare function satisfies minimal fairness axioms without dictatorship. Our Theorem 4.9 is
analogous: no consent-holding configuration achieves zero friction with positive stakes. The differ-
ence is interpretive: Arrow treats impossibility as a problem requiring domain restrictions or relaxed
axioms. We treat inevitable friction as proof—confirmation that the axiom captures a structural truth
about collective decision-making.

4.4.3 Theorem: Convergence to Consent-Respecting Equilibria

Theorem 4.11 (ROM Convergence). Under the ROM dynamics (Eq. 29) with:
(i) Irreducibility: The mutation kernel Mg is irreducible (all types accessible from all other types)
(ii) Aperiodicity: The Markov chain induced by My is aperiodic
(iii) Bounded survival: 0 < ppin < ps(7,G,p) < Pmax < = for all T,G,p

the system converges to a unique stationary distribution p* € A(Ts) satisfying:

p'(r) < Y p* () - ws(') - ps(7') - Ms(¢' — 1) (42)
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Moreover, types with higher survival probability ps = L/ (1 + F) receive higher mass in p*.

Proof sketch. The ROM equation defines a continuous-time Markov process on the probability simplex
A(Ts). Under irreducibility and aperiodicity, the embedded discrete chain is ergodic. Bounded survival
ensures the flow is well-defined.

By the Perron-Frobenius theorem applied to the weighted transition matrix Q(7',7) = wg(7') - ps(7’)-
Ms(t' — 1), there exists a unique positive eigenvector p* with eigenvalue ¢*. This eigenvector is the
stationary distribution.

For the moreover clause: consider two types 7;, 7> with ps(71) > ps(72) and identical weight and
transmission. The ratio of stationary masses is:

p(n) _ ps(n) o1

ri(m)  ps(n)

Thus higher survival yields higher stationary mass. | |

Corollary 4.12 (Selection for Consent). In the consent-friction instantiation, the stationary distribution
p* assigns higher mass to configurations with:

1. Higher legitimacy L
2. Lower friction F
3. Higher stakeholder support (entering through wg)

3Pl

This corollary is the central result connecting “ought” to “is”: consent-respecting configurations are
evolutionarily favored. What should happen (from normative perspectives emphasizing consent) is what
will happen (under selection dynamics), not because of normative force but because consent-respecting
arrangements survive.

4.5 Lumpability and Cross-Scale Dynamics
We established in Section 3.10 that the kernel triple operates at multiple scales. The question of how

dynamics at one scale relate to dynamics at another is formalized through lumpability conditions.

Definition 4.6 (Exact Lumpability). A partition & = {Tj,...,T;} of type space Ts is exactly lumpable
for the ROM dynamics if for all 7;, 7 € & and all 7,7’ € T:

Z WS MS T—> T Z WS ) Ms( /—> T”) (43)
el el
Theorem 4.13 (Preservation of ROM Structure). If partition &2 is exactly lumpable for the ROM dy-
namics at scale S, then the coarse-grained dynamics at scale S' (induced by ?) also satisfy ROM with
kernel triple (ps,ws ,Mg) where:

ps(T;) = ps(t )for any T € T; (well-defined by lumpability) (44)
ws (T) =Y ws(t)- p(t|Ty) (45)
TeT;
Mg(T,—T)) =Y. Y p(t|T)) -Ms(t — 7 (46)
tel T eT;
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Proof. The coarse-grained state is F;(7;) = Y.;c7. p:(7). Differentiating:

dP(T;) _ Z dp(7)

dt it dt
= Z Z pi(T )-ps(t')-Ms(t' — ) — pi (1) -
tel; [ TeTy

Under exact lumpability, the transition rates from any 7’ € T} to aggregate 7; are identical. Grouping
by source partition:

Z Z ()= Z Z () - ws(T) - ps(T)) - Z Ms(t' — 1)

€T v'eTy TieZ TeT; TeT;

Define Mg (Tj — T;) = ¥er. Ms(7T' — T) (well-defined by lumpability). The coarse dynamics be-

come:
sz

ZPt ws (1)) - ps (T;) - Mg (Tj — Ti) — B(T}) - @,

which is ROM at scale §'. [ | [ |

Remark 4.7 (Emergence and Lumpability Failure). When lumpability conditions fail, the coarse-grained
dynamics are not Markovian—they exhibit history-dependence that arises from integrating out fine-
grained degrees of freedom. This is the Mori-Zwanzig phenomenon (Zwanzig, 1960): apparent memory
effects at coarse scales emerge from memoryless dynamics at fine scales when the projection operator is
not lumpable.

“Emergence” is what lumpability failure looks like to a coarse observer. The framework thus pro-
vides a precise account of when macro-level dynamics are autonomous (lumpability holds) versus when
they require micro-level specification (lumpability fails).

4.6 The Belief-Transfer Extension

A distinctive feature of consent dynamics is temporal accumulation: the longer an agent holds consent,
the more they perceive ownership. This creates path-dependence in the mutation kernel.

Definition 4.8 (Ownership Dynamics). The ownership-perception Oy (d,t) of agent A over domain d
evolves as:

PO p(1-0a) 14 = H(d,1)] ~ 7 Ox-1[A # H(d.) @)

where B > 0 is the accumulation rate and y > 0 is the decay rate.

Ownership accumulates logistically while holding consent and decays exponentially when consent is
lost. The asymmetry (8, may differ) captures the empirical observation that ownership perceptions
develop slowly but erode slowly as well—the “sticky” nature of perceived authority.

Theorem 4.14 (Tenure-Transition Relationship). Let Ty denote the tenure of current consent-holder H.

The probability of regime transition decreases exponentially with tenure:
Pr(transition|ty) < exp(—Y-On(Ty)) (48)

where Oy (ty) = 1 —exp(—P1ty) is the ownership level after tenure ty.
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Proof. Regime transitions occur when the mutation kernel permits type change. From Eq. 25, transitions
away from high-ownership configurations are suppressed by factor exp(—y(0(7') — O(7))).
For the current holder’s configuration 7/, O(7') = Oy(ty). Transition to a new configuration T
involves O(7) =~ 0 (new holder has no accumulated ownership).
Therefore:
M;s(t' — 1) o< exp(—y- Op(th))

Transition probability is proportional to this kernel element, yielding the stated result. ] |

This theorem generates the empirically testable prediction that regime longevity exhibits Weibull-like
survival curves with increasing hazard as Ty — O and decreasing hazard as Ty — . Long-tenured
regimes become progressively harder to unseat—not because of inherent superiority but because of
accumulated ownership perception.

4.7 Comparison with Standard Evolutionary Game Theory

We conclude this section by situating the ROM framework within the broader evolutionary game theory

literature.
Table 3: ROM Framework vs. Standard Evolutionary Game Theory
Feature Standard Replicator Dynam- ROM Framework
ics

Fitness Monolithic payoff (7, p) Decomposed: wg(7)-ps(T,G,p)

Network structure Typically ignored or implicit Explicit network Gg; in survival
function

Scale Fixed, typically agent-level Parameterized by scale §; ex-
plicit coarse-graining

Mutation Optional extension Integral: entropy-modulated M

Normative content Descriptive only Bridge principle connecting fit-
ness to legitimacy

Cross-domain Domain-specific instantiation Isomorphic structure across do-

mains

The ROM framework’s distinctive contribution is the consent-friction instantiation that maps align-
ment, stakes, and entropy onto the kernel components. This enables:

1. Prediction: Friction and legitimacy become observable quantities with testable dynamics.

2. Design: Institutional interventions can target specific kernel components (improve o, reduce &,
redistribute o).

3. Unification: The same mathematics applies across political, economic, and computational do-

mains.

4.7.1 Positioning Within Evolutionary Game Theory
Several features distinguish the consent-friction instantiation from standard EGT approaches and warrant
explicit positioning relative to the literature.

Replicator dynamics and equilibrium selection. The classical replicator equation (Eq. 27) selects
among strategies based on relative payoff. A standard result (Hofbauer and Sigmund, 1998; Weibull,
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1995) is that replicator dynamics converge to Nash equilibria in potential games but may cycle or exhibit
chaos in generic games (Galla and Farmer, 2013). The ROM equation inherits this structure but imposes
additional constraint through the friction-derived fitness landscape. In the consent-friction instantiation,
the payoff function is not arbitrary but derives from a scalar friction potential: ps = L/(1+ F), where
F is itself a function of alignment, stakes, and entropy. This structure makes the consent-friction game
closer to a potential game than a generic game, explaining why convergence results (Theorem 4.11) hold
under conditions that would produce chaos in unconstrained replicator dynamics.

Connection to tenable strategy blocks. In standard EGT, a tenable strategy block (Maynard Smith
and Price, 1973) is a set of strategies that resists invasion by any strategy outside the block. The consent-
friction framework generates an analogous structure: consent-respecting configurations form a “tenable
consent block™ in which no misaligned configuration can invade, because misalignment generates fric-
tion that reduces survival probability below the block’s mean fitness. The friction function thus provides
a mechanism for evolutionary stability that standard ESS analysis takes as primitive—it explains why
certain strategy sets are invasion-resistant rather than merely identifying which ones are.

Extending beyond Nash and correlated equilibrium. Standard equilibrium concepts—Nash, cor-
related, evolutionary stable—describe configurations where no agent benefits from unilateral deviation.
The consent-friction framework identifies a stronger property: configurations where deviation generates
structural resistance (friction) from affected parties, not merely payoff reduction for the deviator. This
is closer to Ostrom’s institutional analysis (Ostrom, 1990), where rule violations trigger sanctions from
the governance community, than to classical Nash reasoning where deviation is individually irrational.
The ROM dynamics capture this distinction: consent-violating mutations face both fitness disadvan-
tage (lower pg) and active resistance (friction-generated selection pressure from high-stake agents who
support the existing arrangement through wg).

Mutation as structural feature. In classical replicator dynamics, mutation is an optional exten-
sion that blurs evolutionary stability. In the consent-friction framework, mutation is integral: entropy-
modulated transmission noise (Eq. 16) captures the inherent imperfection of institutional reproduction.
This connects to the replicator-mutator literature (Hadeler, 1981; Page and Nowak, 2002) but with a
substantive interpretation: mutation rate is not a free parameter but is determined by the information
structure of the consent relationship. Higher entropy means noisier institutional transmission, which is
empirically measurable rather than theoretically arbitrary.

4.8 Summary

This section established the dynamical core of the consent-friction framework:

1. ROM Equation: Type dynamics governed by weighted replicator-mutator equation with consent-
specific instantiation (Eq. 33).

2. Friction Dynamics: Temporal evolution of friction depends on stake, alignment, and entropy
dynamics (Eq. 35).

3. Legitimacy Evolution: Legitimacy changes through voice dynamics and stake reweighting (The-
orem 4.7).

4. Key Theorems:
* Consent-Holding Necessity (Theorem 4.8): Consent-holding is unavoidable.

* Inevitable Friction (Theorem 4.9): Zero friction is impossible with positive stakes.
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* ROM Convergence (Theorem 4.11): System converges to consent-respecting equilibria.
* Tenure-Transition (Theorem 4.14): Regime transition probability decays with tenure.

5. Scale Coherence: ROM structure is preserved under lumpable coarse-graining (Theorem 4.13).

The dynamical treatment reveals that consent-respecting configurations are not normative ideals but
evolutionary attractors. “Ought” connects to “is” through selection: what persists is constrained by what
generates less friction. The framework provides both descriptive predictions and instrumental guidance
for institutional design.

Full technical details, convergence proofs, and numerical validation appear in the companion pa-
per (Farzulla, 2025g).

5 Domain Instantiations

The preceding sections established the formal machinery of the Axiom of Consent: primitive defini-
tions, the kernel triple, and evolutionary dynamics. We now demonstrate that this machinery generates
substantive predictions for multi-agent systems, with supplementary applications to other domains es-
tablishing cross-domain generality.

5.1 Multi-Agent Coordination

Multi-agent systems provide an ideal domain for the consent-friction framework. Resource allocation is
explicit (encoded in protocols and access controls), interactions are observable (logged and monitorable),
and the consequences of coordination failure are immediate and measurable.

5.1.1 Consent-Holding as Resource Authority

In multi-agent systems, “consent” translates to authority over resources that affect other agents.

Definition 5.1 (Resource Consent). Agent i holds consent over resource r if i has authority to determine
the allocation of r. The consent-holding configuration C : % — </ maps resources to controlling agents.

Definition 5.2 (Stake in Resource). Agent j’s stake in resource r is:

U;

dallocation(r) “9)

oj(r) = ’

where U; is agent j’s utility function. High stake means resource allocation significantly impacts agent
welfare.

Definition 5.3 (Allocation Alignment). The alignment between consent-holder i and affected agent j

for resource r is:
cov(V,U;,V,Uj)

- V/var(V,.U;) -var(V,U;)

0;j(r) (50)

This is the correlation between their utility gradients with respect to r’s allocation. When ¢;; = 1, both

agents want the same allocation; when @;; = —1, they want opposite allocations.

Definition 5.4 (Communication Entropy). The entropy between agents i and j is:
&;j = H(Uj|signal,_, ;) (51

where H (+|-) is conditional entropy. This measures how much uncertainty about j’s preferences remains
after i receives j’s communication.
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5.1.2 Coordination Friction

Friction in multi-agent systems manifests as coordination failure.

Theorem 5.1 (Multi-Agent Friction). For agent j affected by resource r controlled by agent i, the friction

generated is:
1+ Eij (l")

BN =00 g (52)

Total system friction is:

Fsystem = Z Z Fj(r) (53)

reZ j#£C(r)
This friction manifests operationally as:
* Communication overhead: Agents expend resources negotiating, signaling, and verifying
* Deadlock: Conflicting resource claims create blocking conditions
* Thrashing: Agents repeatedly adjust allocations without convergence
* Defection: Agents exit cooperative arrangements or engage in adversarial behavior
5.1.3 Coordination Legitimacy

Legitimacy characterizes sustainable coordination.

Definition 5.5 (Coordination Legitimacy). The legitimacy of consent-holding configuration C is:

_ LreaXjews 0j(r)-v(r)

L(C
O = = T o)

(54)

where v;(r) € [0,1] is agent j’s effective voice over resource r—influence on allocation decisions pro-
portional to actual impact on outcomes.

Theorem 5.2 (Legitimacy-Stability Correspondence). Configurations with L(C) > L* (where L* is a
domain-specific threshold) are evolutionarily stable under ROM dynamics. Configurations with L(C) <

L* generate accumulating friction and eventual reconfiguration.
Proof. From the ROM equation (Eq. 33), the survival probability of configuration C is:

L(C)

p(C)= T+F(C) (55)

For L(C) < L*, accumulated friction F(C) grows, decreasing p(C) below the replacement threshold.
Alternative configurations with higher legitimacy invade. The equilibrium is a configuration where
legitimacy is maximized subject to structural constraints. |
5.1.4 Application: Distributed Resource Allocation

Consider n agents competing for m shared resources with heterogeneous preferences. The standard
approach assigns resources to maximize aggregate utility:

Ccr = argmcaxzj:Uj(C) (56)

The consent-friction framework predicts this allocation generates friction proportional to the degree
of stakes-voice misalignment. A utilitarian allocation that ignores minority high-stake agents will face
resistance from those agents.
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Proposition 5.3 (Friction-Aware Allocation). The friction-minimizing allocation solves:

ok : 1+8C(r),j
C = argmin Y )Y o) (57)

rjAC(r) 1+ O‘C(r)j(”)

This differs from utilitarian allocation when high-stake agents have low alignment with potential con-

trollers.

Implication: Optimal allocation is not purely utilitarian but accounts for coordination costs. As-
signing resources to agents with high alignment to affected parties reduces friction, even if immediate
aggregate utility is lower.

5.1.5 Application: Multi-Agent Reinforcement Learning

In MARL, agents learn policies that interact through shared environments (Leibo et al., 2017; Lerer and
Peysakhovich, 2019). The consent-friction framework provides a lens for understanding coordination
failure.

Definition 5.6 (MARL Alignment). For agents i, j with reward functions R;, R;, alignment is:

o EualRi(5,)Ry(5,0) ~ EIRJE[R) )
1] Ok, - GRj

the correlation of rewards over state-action pairs.

Theorem 5.4 (Coordination Convergence). A MARL system with mean pairwise alignment 0. and mean

communication entropy € has expected coordination friction:

1+&

E|F|e<o-
7] 1+a

(59)

Systems with B[F| > F,; fail to converge to stable joint policies.

Implication: MARL convergence depends on reward alignment ¢ and communication capacity (in-
verse €). Systems with misaligned rewards or bandwidth-constrained communication generate friction
exceeding convergence thresholds.

5.1.6 Application: AI Alignment

The AI alignment problem (Russell, 2019; Bostrom, 2014) can be framed as consent-friction mini-
mization between Al systems and human principals. Constitutional Al approaches (Bai et al., 2022)
explicitly encode consent structures through principle hierarchies, representing a practical instantiation
of the framework’s alignment optimization.

Definition 5.7 (Human-AI Alignment). For Al system A with learned objective U4 and human principal
H with true preferences Up:
oup = corr(Us,Uy) (60)

Definition 5.8 (Interpretability as Entropy). The interpretability deficit is:
€an = H(Uys|observablesy) (61)

Opaque Al systems have high €; interpretable systems have low €.
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Theorem 5.5 (Alignment Friction). An Al system with learned objective misaligned from human pref-

erences generates friction:

14+ ey
AH = O (62)

where oy is the magnitude of human stakes in Al behavior.
Predictions:

1. Interpretability reduces friction. Investment in interpretability (reducing €) is not just about
safety but about coordination—reducing friction between Al and human principals.

2. Misalignment generates resistance. Al systems with a4y < 1 face behavioral correction pres-
sure from humans, manifesting as constraints, shutdowns, or adversarial responses.

3. Stake magnitude matters. High-stakes Al applications (medical, legal, financial) generate more
friction per unit misalignment than low-stakes applications.

4. Relational constitution of alignment. Human-AI relationships that exhibit genuine interaction
patterns constitute relationships with moral weight, implying that alignment is not merely techni-
cal but relational (Farzulla, 2025f). Al systems with embodied autonomy possess the functional
properties that make unconsented rule illegitimate (Farzulla, 2025c). Empirical evidence sup-
ports this behavioral framing: Salatino et al. (2025) demonstrate that Al behavior—not attributed
sentience—drives human moral judgments, while O’Reilly et al. (2025) show that action descrip-
tions shape moral responsibility attribution to robots. Leibo et al. (2025) argue for treating per-
sonhood itself as a governance tool—bundles of rights and obligations—rather than metaphysical
status, converging with our stakes-based approach.

5.1.7 ROM Dynamics in Agent Populations

The ROM equation governs evolution of coordination strategies in agent populations.

Theorem 5.6 (Strategy Evolution). Let T € .7 index coordination strategies (consent-holding configu-
rations). Under ROM dynamics:

dp/(t)

A0 o) 42 —

TR -Ms(T' — 1) = pi(7) - i (63)

Strategies with high legitimacy L and low friction F increase in frequency. Strategies generating unsus-
tainable friction are selected against.

Corollary: In multi-agent systems with learning and adaptation, consent-respecting configurations
are evolutionary attractors. Not because they are “good” but because they are stable—they generate less
friction and persist longer.

5.2 Supplementary Applications

The consent-friction framework applies beyond multi-agent systems. We briefly sketch two additional
domains to demonstrate cross-domain generality.

5.2.1 Cryptocurrency Governance

Cryptocurrency markets instantiate consent-friction dynamics with observable precision (De Filippi and
Wright, 2018; Allen et al., 2020; Buterin, 2017). Governance structures are encoded in protocols; trans-
actions are recorded on public blockchains; and friction manifests as price volatility.
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Key Results. In Farzulla (2025¢), I document that infrastructure disruption events generate 5.7 x larger
volatility shocks than regulatory uncertainty events. The consent-friction framework explains this dif-

ferential:

* Infrastructure events (exchange hacks, protocol failures) have high alignment across token holders—
near-universal agreement that failures are bad. High a ~ 0.9 means holders coordinate rapid
response.

* Regulatory events have heterogeneous alignment—some holders welcome regulation, others op-

pose it. Mixed o ~ 0.3 creates coordination fragmentation.

The volatility differential reflects correlated friction: high-alignment events produce synchronized

responses; low-alignment events produce fragmented responses.

Predictions. Governance-aligned protocol changes (community-approved upgrades) generate lower
friction than governance-violating changes (contentious forks, external impositions). This provides
testable predictions for cryptocurrency market dynamics. The Aggregated Systemic Risk Index (ASRI)
(Farzulla and Maksakov, 2025) demonstrates that systemic risk in cryptocurrency markets emerges from
distributed friction sources rather than localized protocol failures—a direct application of the friction ag-

gregation apparatus developed in Section 3.

Case Study: Terra-Luna (May 2022). The Terra-Luna collapse provides a natural experiment for
the friction framework with quantifiable parameters. Prior to May 2022, UST maintained its dollar peg
through an algorithmic relationship with LUNA. In framework terms:

* Stakes o: Approximately $40B in UST market cap at peak

* Alignment o: Estimated 0.6-0.8 (users believed algorithmic peg was aligned with their stability
interests)

* Entropy &: Moderate (= 0.3-0.5) due to mechanism complexity creating information asymmetry
about fragility conditions

* Legitimacy L: High (market confidence, institutional adoption, ecosystem growth)

The depeg sequence unfolded as a friction-legitimacy spiral:

1. Information shock: Large redemptions created an € shock, revealing mechanism fragility that
was previously hidden in mechanism complexity.

2. Alignment collapse: As the depeg began, & collapsed from ~ 0.7 toward 0 as users recognized
misalignment between the algorithmic mechanism and peg maintenance under stress.

3. Friction explosion: Substituting approximate values: F = 40B x (1 +0.5)/(1+0.2) ~ 50B
equivalent friction—exceeding any institutional tolerance threshold.

4. Legitimacy collapse: L — 0 as stake-weighted confidence evaporated within days.

The speed of collapse—from stable peg to near-zero value in approximately 72 hours—reflects the
friction amplification mechanism: high-o domains are catastrophically fragile to joint o /€ shocks. This

validates the multiplicative structure of the friction function.
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Case Study: FTX (November 2022). The FTX collapse instantiates a consent-violation case with dif-
ferent parameter dynamics. FTX, as a centralized exchange, held consent over customer assets through

custodial relationships. In framework terms:

* Stakes ¢: Approximately $8-$16B in customer deposits
* Alignment ¢ (pre-revelation): Perceived ~ 0.9 (fiduciary duty, regulatory compliance signals)
* Entropy € (pre-revelation): Moderate (= 0.4) due to proprietary trading operations

The critical difference from Terra-Luna is the direction of information revelation:

1. Entropy elimination: Revelation reduced € — O—full information about misappropriation be-
came available.

2. Alignment inversion: Simultaneously, o collapsed from perceived +0.9 to revealed ~ —0.8—
the consent-holder had been actively adversarial to delegating stakeholders.

3. Boundary approach: As oo — —1, the friction function approaches infinity: F = o (1+¢€)/(1+
o) —»ooas (14+0o) — 0.

The framework predicts that adversarial consent-holders (¢« < 0) generate unbounded friction when
information (¢ — 0) reveals the adversarial relationship. This matches the observed market response:
contagion spread rapidly through interconnected entities, with transfer entropy analysis (Schreiber,
2000; Bossomaier et al., 2016) revealing directional information flow from FTX to exposed counter-

parties.
Both cases validate the framework’s prediction that cryptocurrency markets, with their explicit gov-

ernance encoding and observable transactions, provide natural laboratories for testing consent-friction

dynamics.

5.2.2 Political Legitimacy
Political systems provide the original domain for consent analysis. The kernel triple operationalizes
legitimacy as stakes-weighted voice (Farzulla, 2025b).

Key Mapping.

* Alignment «: Correlation between citizen preferences and policy outcomes
» Stakes o: Magnitude of citizen welfare at stake in policy decisions

* Entropy &: Information asymmetry between citizens and governors

* Friction F': Protest, instability, resistance, revolution

* Legitimacy L: Stake-weighted effective voice

Predictions. Political systems with systematic stakes-voice misalignment (high-stake populations with
low voice) generate accumulating friction. The ROM equation predicts eventual reconfiguration—

revolution, reform, or collapse—when friction exceeds institutional tolerance.

5.2.3 Structural Isomorphism

The claim is not analogy but identity. Table 4 presents the kernel triple across domains.
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Table 4: The Kernel Triple Across Domains

Component Multi-Agent Cryptocurrency Political

Alignment (&) Reward correlation Holder-protocol match  Citizen-policy match
Stake (o) Utility exposure Token value Affected interests
Entropy (&) Communication overhead Market uncertainty Information asymmetry
Friction (F) Coordination failure Volatility Instability

Legitimacy (L) Sustainable coordination =~ Governance acceptance Democratic legitimacy

The same equations govern all three domains:

_ 14+¢
F=o0- o (64)
XSt Vi
L= Yisi 65)
dp(T) _ / / L(T/) / -
7 f;p(r)-cf(r)-m%(r —1)—p(c) ¢ (66)

These are the same mathematical objects with domain-specific variable interpretations. This uni-
fication suggests consent-friction dynamics capture something fundamental about coordination under
preference heterogeneity and information asymmetry.

6 Measurement Apparatus

The preceding sections established the formal machinery of the consent-friction framework: the kernel
triple (&, 0, €), the friction equation F = o(1+¢€)/(1 + «), and the evolutionary dynamics governing
consent configurations. This section addresses a prior question: row do we measure these quantities?

Theoretical elegance is worthless without empirical tractability. The framework’s value depends
on whether its primitives admit operationalization—whether alignment, stakes, and entropy can be ob-
served, quantified, and tracked across domains. We argue they can, though each presents distinct mea-
surement challenges requiring domain-specific instrumentation.

6.1 The Measurement Problem

The kernel triple contains three latent variables: alignment (), stakes (o), and entropy (€). None is
directly observable. Alignment is a correlation between target functions that agents may not articulate
or even consciously represent. Stakes are subjective valuations of consequences. Entropy is information
loss across channels that may be opaque to both sender and receiver.

This indirectness is not unique to our framework—utility, preference, and welfare are similarly la-
tent. The standard solution is revealed preference: infer latent states from observable behavior (Samuel-
son, 1938; Richter, 1966). We adapt this approach while acknowledging its limitations.

Three methodological principles guide our operationalizations:

Principle 1: Multiple Proxies. No single observable perfectly captures any kernel component. We
use batteries of indicators, triangulating toward the latent variable.

Principle 2: Domain Specificity. The concept of alignment is domain-invariant; the measurement
is domain-specific. Measuring voter-policy alignment requires different instruments than measuring
holder-protocol alignment or agent-reward alignment.

Principle 3: Error Quantification. Measurement error is inevitable. We specify expected error

distributions and how they propagate through the friction equation.
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6.2 Operationalizing Alignment ()

Alignment measures the correlation between an agent’s target function and the consent-holder’s target
function. When o = 1, the consent-holder optimizes for exactly what the agent wants. When o = —1,
perfect adversarial misalignment. When o = 0, the consent-holder’s optimization is orthogonal to the
agent’s interests.

Operationalization requires measuring two target functions and computing their correlation. We
distinguish three approaches.

6.2.1 Survey-Based Preference Elicitation

The most direct approach elicits preferences through structured instruments.

Definition 6.1 (Preference Survey Alignment). Let p; € R be agent i’s elicited preference vector over
k outcome dimensions, and py € R¥ be the consent-holder’s stated or revealed policy position. Survey-

based alignment is:
oSy Pi - PH (67)

: ~ill- [lpa

Instrument design. Survey items must span the outcome space relevant to the domain. In politi-
cal contexts, this includes standard policy preference batteries: redistribution, regulation, social issues,
foreign policy. In cryptocurrency contexts, items cover protocol parameters: block size, fee structures,
governance mechanisms, fork preferences. In Al contexts, items operationalize reward function compo-
nents: task prioritization, safety constraints, user preference learning.

Example: Political Alignment. The Comparative Study of Electoral Systems (CSES) provides
multi-dimensional preference data for voters and parties across 50+ democracies. We compute:

(x.CSES (t) — 1 D(piapG(t))

i (63)
Dmax

where D(-,-) is Euclidean distance in policy space, G(¢) denotes the governing coalition at time 7, and
Dinax normalizes to [—1, 1].

Limitations. Survey data suffer from well-documented biases: social desirability, acquiescence, sat-
isficing (Krosnick, 1999). Elicited preferences may diverge from revealed preferences; stated and actual
target functions may differ. Survey timing matters: preferences shift, and a snapshot may misrepresent
dynamic alignment.

6.2.2 Revealed Preference Alignment

Revealed preference approaches infer target functions from observed behavior rather than stated prefer-
ences.

Definition 6.2 (Behavioral Alignment). Let a; € < be agent i’s observed actions and ay € &/ be the
consent-holder’s policy actions. Behavioral alignment is:

g/behavioral _ COI‘I‘(U[ (aH) ,U; (a’f )) (69)

1 1

where U, is agent i’s inferred utility function and a; is the action i would have chosen given the consent-
holder’s resources and constraints.

Market-based measurement. In financial domains, revealed preferences emerge through trading
behavior. If agent i increases position after policy announcement P, this reveals P’s alignment with i’s
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interests. Formally:
o™tk (pY — sion(Ahi(P)) - (1 - e*“Ahf“’)‘) (70)

1

where Ah;(P) is the change in i’s holdings following announcement P and A scales the sensitivity.
Voting-based measurement. Electoral choices reveal policy preferences. We can estimate align-
ment through:

0" =Y vi-cos(py,pc) (71)

p€EParties

where v;, is i’s vote share for party p (typically 1 for the voted party, O otherwise), p,, is party p’s policy
position, and pg is the governing coalition’s position.

Limitations. Revealed preferences are confounded by constraints. An agent who does not exit a
market may be aligned, or may face exit costs. An agent who votes for party P may endorse P’s platform,
or may engage in lesser-evil reasoning. Revealed preference approaches require careful attention to the
choice architecture that constrains revealed behavior.

6.2.3 Cross-Domain Alignment Indices

For aggregate analysis, we require summary measures that combine individual alignments.

Definition 6.3 (Aggregate Alignment Index). The aggregate alignment index for domain d at time ¢

is:
Yies,si(d) - ai(d,t)

d — d

A==y )

where Sy is the set of affected agents, s;(d) is agent i’s stake, and ¢;(d,?) is individual alignment.

(72)

This stakes-weighted average ensures that high-stakes agents’ alignment contributes proportionally
more to the aggregate. A consent-holder perfectly aligned with one low-stakes agent but misaligned
with many high-stakes agents will exhibit low aggregate alignment. Empirical evidence for friction dy-
namics in human-Al interaction is emerging: Lopez-Lopez et al. (2026) demonstrate that metacognitive
monitoring in entangled human-Al decision-making exhibits friction patterns consistent with this ax-
iomatization, providing the strongest empirical validation from cognitive science that alignment-stake
interactions generate measurable behavioral signatures.

6.3 Operationalizing Stakes (o)

Stakes quantify the magnitude of an agent’s optimization at risk in a domain. High-stakes agents have
much to gain or lose from domain outcomes; low-stakes agents are relatively indifferent.
Operationalization varies by domain type. We distinguish three categories.

6.3.1 Economic Stakes

In economic domains, stakes are quantifiable in monetary terms.

Definition 6.4 (Monetary Stake). Agent i’s monetary stake in domain d is:

o7 (d) = E[|W;(0) — W;(0')|] (73)

l
where W; is i’s wealth function and the expectation is over the distribution of possible outcomes (0, 0").

Direct exposure measures. Portfolio holdings, property ownership, employment income—these
provide direct measures of monetary stakes. A holder with $1M in cryptocurrency has higher stakes in
protocol governance than a holder with $100.
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Sunk cost adjustments. Stakes include not just current exposure but irreversible commitments. An
employee with 20 years of firm-specific human capital has higher stakes than a new hire with transferable
skills, even at identical current compensation.

Present value calculations. Future exposure must be discounted:

oV (d)=Y 68" of"(d1) (74)
t=0

where 8 € (0,1) is the discount factor.
6.3.2 Political Stakes

In political domains, stakes involve interests that resist direct monetization.

Definition 6.5 (Political Stake). Agent i’s political stake in domain d is:
GZPOI(d ) = ¢ (proximity,(d), reversibility(d), magnitude(d)) (75)

where ¢ is an aggregation function combining proximity to the decision, reversibility of the outcome,
and magnitude of life impact.

Proximity measures. Policy decisions affect some populations directly, others indirectly. A policy
restricting immigration affects prospective immigrants directly and employers of immigrants indirectly.
Proximity can be operationalized through causal pathway analysis: how many steps between decision
and consequence?

Affected interest inventories. Following Goodin (2007), we can enumerate affected interests:

* Vital interests: life, bodily integrity, basic liberty

» Important interests: livelihood, family, community membership

* Significant interests: property, opportunity, recognition

» Peripheral interests: convenience, preference satisfaction

Stakes weight by interest category, with vital interests weighted highest.
6.3.3 Computational Stakes

In multi-agent and Al contexts, stakes involve resource allocation and task criticality.

Definition 6.6 (Computational Stake). Agent i’s computational stake in task allocation d is:

;""" (d) = c(d) - m(d) (76)

1

where ¢(d) is the criticality weight of domain d and 7;(d) is agent i’s performance sensitivity to d.

Resource allocation. In distributed systems, resource allocation (compute, memory, bandwidth)
determines task performance. An agent allocated insufficient resources for a high-criticality task has
high stakes in resource governance.

Task criticality. Some tasks are safety-critical; failure is catastrophic. Others are optimization-
oriented; suboptimality is tolerable. Criticality can be operationalized through loss functions:

d) = L(o)— min L 77
C( ) olén()’a()z(l) (0) oglﬁl?d) (0) 7

where 0'(d) is the outcome space and L is the loss function.
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6.4 Operationalizing Entropy (¢)

Entropy captures information loss in the consent-holding relationship. Even perfectly aligned consent-
holders generate friction when they do not know what affected agents want.
We operationalize entropy through three approaches.

6.4.1 Information-Theoretic Measures

The most direct operationalization uses Shannon entropy.

Definition 6.7 (Preference Entropy). The preference entropy between agent i and consent-holder H is:

(78)

i A Pik
g"° = H(pi[p/") = — Y pilog
k ik

p.

where p; is agent i’s true preference distribution, p is the consent-holder’s estimate of i’s preferences,
and the sum is over preference dimensions.

This is the Kullback-Leibler divergence between true and estimated preferences—a measure of in-
formation loss in preference transmission.

Measurement challenges. Computing £

requires knowing both the true preference distribution
and the consent-holder’s estimate. The former is itself latent (hence the survey/behavioral approaches
above); the latter requires access to the consent-holder’s internal model.

Proxy: Model Uncertainty. When direct measurement is infeasible, we can use uncertainty mea-
sures in the consent-holder’s preference model. If H maintains a Bayesian posterior over i’s preferences:

uncertaint
& Y=H

(pi|Z;) = entropy of posterior (79)

Higher posterior entropy indicates greater information loss.

6.4.2 Communication Bandwidth Constraints

Information loss often stems from communication constraints.
Definition 6.8 (Channel Entropy). The channel entropy in consent relationship (i, H) is:

I1(X;; Yy )
H(X:)

channel

g =1— (80)

4
where X; is agent i’s preference signal, Yy is the consent-holder’s received signal, and (;-) is mutual
information.

This measures the proportion of preference information lost in transmission. When I(X;;Yy) =
H(X;), no information is lost (¢ = 0). When I(X;;Yy) = 0, transmission is pure noise (¢ = 1).

Operationalization via questionnaires. In practice, we can estimate channel entropy through con-
sistency checks. Ask agents to state preferences; ask consent-holders to predict agent preferences. Dis-
crepancy between stated and predicted preferences operationalizes channel entropy.

6.4.3 Proxy Variables for Information Asymmetry

When direct information-theoretic measurement is infeasible, proxy variables can approximate entropy.
Transparency indices. Organizations and governments vary in transparency. Freedom of infor-

mation laws, disclosure requirements, and institutional openness create conditions for lower entropy.

Transparency indices (e.g., Open Government Partnership scores) proxy for € in political domains.
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Misperception scores. Survey instruments can measure systematic misperception. If citizens sys-
tematically misunderstand government policy, or if protocol developers systematically misunderstand
holder preferences, these misperceptions proxy for entropy.

. . 1 .
Smlsperceptlon — ; Z Hp{-I _ pi||2 (81)
i

Complexity measures. Protocol complexity, regulatory complexity, and algorithmic opacity in-
crease entropy by limiting comprehension. Complexity indices (lines of code, Flesch-Kincaid readabil-
ity scores, regulatory burden metrics) proxy for comprehension barriers.

6.4.4 Normalization and Domain-Specific Mapping

Normalization. Throughout this paper, € € [0, 1] is normalized such that € = 0 represents perfect in-
formation (consent-holder has complete knowledge of stakeholder preferences) and € = 1 represents
maximum ignorance (consent-holder has no information beyond priors). For KL-divergence measures,
normalize by maximum possible divergence in the domain; for channel capacity measures, the definition
naturally produces values in [0, 1].

Domain-specific operationalization. Table 5 summarizes recommended € operationalizations across

domains.
Table 5: Entropy (€) Operationalization by Domain
Domain Primary Operationalization Proxy Variables
Political governance Channel entropy (Eq. 80) Transparency indices, polling error
Cryptocurrency Misperception score Forum sentiment divergence, governance participation
MARL Mutual information deficit Communication bandwidth, message entropy
Al alignment Posterior uncertainty Reward model uncertainty, RLHF confidence
Corporate governance Disclosure quality Analyst forecast dispersion, bid-ask spread

6.5 Friction Measurement

Friction is the dependent variable: the outcome we predict from the kernel triple. We require direct
measures of friction to validate the framework.

6.5.1 Market Volatility as Friction Proxy
In financial domains, friction manifests as volatility.

Definition 6.9 (Volatility-Based Friction). The friction in market domain d at time ¢ is proxied by:

o Orealized (d7 t )

F*Yd 1) = 82
( 7 ) cybaseline(d) ( )

where Orealized 1S realized volatility (e.g., annualized standard deviation of returns) and Opaseline i baseline
volatility during stable periods.

The 5.7 volatility differential documented in Farzulla (2025e) exemplifies this operationalization:
infrastructure events generate friction ratios near 5.7, regulatory events generate lower friction ratios
near 1.0-2.0. This empirical figure is taken from that event-study analysis; the present paper uses it
illustratively rather than as a required premise for the theoretical framework.

GARCH specifications. For time-series analysis, friction dynamics can be modeled through condi-
tional volatility:

hy =+ o0& |+ Pih1+y-Fld,t—1) (83)
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where friction enters as an exogenous regressor in the variance equation.
6.5.2 Institutional Instability Indicators

In political domains, friction manifests as institutional instability.

Definition 6.10 (Institutional Friction Index). The friction in polity P at time ¢ is:
F™Y(P,t) = wy - Protest(P,¢) +w» - Litigation(P, ) 4+ wj - Exit(P,¢) + wq4 - Noncompliance(P,t)  (84)

where each component is normalized to [0, 1] and ¥_;w; = 1.
Component measures.

* Protest: Frequency and intensity of collective action events (GDELT, ACLED datasets)
* Litigation: Constitutional challenges, administrative appeals, judicial review rates
» Exit: Emigration, capital flight, organizational departure rates

* Noncompliance: Tax evasion, regulatory violation, civil disobedience rates
6.5.3 Coordination Failure Metrics

In multi-agent and computational domains, friction manifests as coordination failure.

Definition 6.11 (Coordination Friction). The friction in multi-agent system .# is:

Fcoord(%) —1- Rachieved (85)
Roptimal

where Rqchieved 18 realized aggregate reward and Ropimar is the theoretically optimal aggregate reward
under perfect coordination.

The gap between optimal and achieved performance captures coordination overhead—friction in the
multi-agent setting.

Communication overhead. Friction also manifests as excessive coordination cost:

Foverhead(%) _ M (86)
Ctotal

where Ceoordination 1S Tesources spent on coordination (messaging, synchronization, negotiation) and Cioa1
is total resources.

6.6 Methodological Limitations

We conclude with explicit acknowledgment of measurement limitations. Honesty about these limitations
strengthens rather than weakens the framework; it specifies conditions under which empirical tests are
valid.

6.6.1 Measurement Error Propagation

Each kernel component is measured with error. Let & = ot + 1, 6 = 6 + N, and € = € + 1, where 1)
terms are measurement errors.
The friction estimate is:

R 1+¢&
F=6 87
“1+a &7
Taylor expansion around true values yields:
R JdF JdF JF
Fr~F4 =N+ =N+ =—Ng+0(n* 88
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Substituting partial derivatives:

. l1+e c o(l+¢)
F~F —
+1+an6+1+an£ (1+a>2na

(89)

Implications. Alignment errors are amplified by (14 a)~2: when alignment is low (near —1),
alignment measurement errors dominate friction estimates. Stakes errors are amplified by (1+¢€)/(1+
o): in high-entropy, low-alignment conditions, stakes measurement matters most.

Mitigation. Multiple independent measures of each component allow error reduction through aver-
aging. Instrumental variables and two-stage least squares can address endogeneity. Sensitivity analysis

across plausible error ranges provides robustness checks.
6.6.2 Proxy Validity Concerns

Each operationalization substitutes an observable proxy for a latent construct. The validity of this sub-
stitution is always questionable.

Construct validity. Does survey-measured preference alignment capture the theoretical construct
of target function correlation? The match is imperfect. Survey responses reflect conscious, articulable
preferences; target functions may include unconscious drives and implicit goals.

Criterion validity. Do our friction measures correlate with the theoretical construct of system resis-
tance? Volatility, instability, and coordination failure are plausible manifestations, but friction may also
manifest in unmeasured forms: psychological stress, hidden noncompliance, delayed resistance.

Convergent validity. Do multiple measures of the same construct correlate? If survey-based and

behavioral alignment measures diverge substantially, at least one is invalid.

6.6.3 Domain-Specific Calibration

The friction equation’s functional form is domain-invariant, but parameter scales are domain-specific.

Scale incompatibility. A $1M stake in cryptocurrency is not equivalent to a $1M stake in national
policy. The former is liquidatable in minutes; the latter implicates non-monetary interests. Comparing
friction across domains requires calibration constants we do not yet possess.

Threshold effects. The friction equation is continuous, but real systems may exhibit discontinuities.
Political legitimacy may collapse suddenly at critical thresholds; markets may remain stable until flash-
crash tipping points. These nonlinearities require domain-specific threshold identification.

Cultural modulation. Friction expression varies culturally. High-friction configurations in indi-
vidualist societies produce exit; in collectivist societies, they may produce voice or loyalty (Hirschman,
1970). Cross-cultural application requires cultural modulation terms.

6.6.4 Recommendations for Empirical Work

We offer practical recommendations for applying the measurement apparatus:

1. Use multiple operationalizations. No single measure is definitive. Use survey, behavioral, and

proxy measures; require convergence for strong claims.

2. Report measurement uncertainty. Include standard errors on kernel estimates. Propagate errors
through the friction equation. Present sensitivity analyses.

3. Calibrate within domains first. Establish baseline friction levels and scaling within a domain
before attempting cross-domain comparisons.
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4. Validate friction measures independently. Do not circularly use friction to estimate kernel
components and kernel components to predict friction. Use temporal separation or instrumental
variables.

5. Specify scope conditions. State explicitly when Lewontin conditions hold: where is there varia-
tion, differential persistence, and heritable transmission? The framework applies only within these
boundaries.

6.7 Sensitivity Analysis: Functional Form Robustness

As acknowledged in Section 2.5, the friction function F = 6(1 +¢€)/(1 4+ a) is a phenomenological
ansatz, not uniquely derived. This subsection examines how the framework’s predictions change under
alternative functional specifications.

6.7.1 Alternative Specifications Considered

We analyze three plausible alternatives that satisfy the same boundary conditions (non-negativity, mono-
tonicity, stake-proportionality):
Exponential form:
FeXp — G~e_Ka(1+€) (90)

where K > 0 controls alignment sensitivity. This form has a finite limit as & — —1, unlike the baseline
form.
Geometric mean:
F& —g.(1+e)f (1-a) (91)

with exponents 3,7 > 0. This form allows differential weighting of entropy versus misalignment con-
tributions.
Entropy-based divergence:

FKL =0 DKL (Pstakeholder”Hmlder) (92)

where the KL divergence directly operationalizes preference mismatch.
6.7.2 Comparative Statics

All four specifications agree on directional comparative statics:

* dF /do > 0 (friction increases with stakes)
* JF /da < 0 (friction decreases with alignment)
* dF /de > 0 (friction increases with entropy)

This agreement is not surprising—the forms were chosen to satisfy these conditions. The qualitative
predictions of the framework are robust across specifications.

6.7.3 Quantitative Differences

The specifications differ quantitatively in three regimes:

Extreme misalignment (o« — —1): The baseline form predicts F — oo; the exponential form pre-
dicts F — o -€*(1 + ¢€), finite. The geometric form’s behavior depends on y. Empirically distinguishing
these requires observing friction in highly adversarial configurations.

High-entropy, moderate-alignment: The baseline form treats entropy and alignment additively in
the numerator/denominator; the geometric form allows multiplicative interaction. If friction empirically

54



exhibits interaction effects (entropy matters more when alignment is low), the geometric form may fit
better.

Near-perfect alignment (o — 1): All forms predict minimal friction proportional to stakes. Quan-
titative differences are small in this regime.

6.7.4 Empirical Distinguishability

We identify three empirical tests that could discriminate between forms:

1. Extreme misalignment data. If observable cases of near-perfect misalignment show bounded
friction (not runaway instability), the exponential form is favored. If friction escalates toward
system collapse, the baseline form’s unboundedness is descriptively accurate.

2. Interaction effects. Regression specifications including & X € interaction terms can detect whether
entropy effects are alignment-dependent. Significant interaction favors the geometric form.

3. Cross-sectional fit. Fit all four forms to cross-domain data; compare AIC/BIC. The form with
best out-of-sample prediction survives.

6.7.5 Framework Invariance

The conceptual framework is invariant to functional form choice:

* Friction remains the observable primitive

The kernel triple (¢, 0, €) remains sufficient statistics
» Evolutionary dynamics (Section 4) follow from friction gradients regardless of F’s specific form
* The friction-first methodology and asymptotic consent horizon are form-independent

The framework’s contribution is the architecture—friction as primitive, consent as derived, the ker-
nel triple as organization principle. The specific functional form F = 6(1+¢€)/(1 + &) is a working
hypothesis within this architecture, revisable in light of evidence.

This sensitivity analysis addresses the legitimate concern that the friction function is “asserted, not
derived.” We acknowledge this status explicitly and show that the framework’s qualitative predictions are
robust while quantitative predictions depend on form choice—exactly the epistemic position appropriate
for a phenomenological ansatz awaiting empirical calibration.

6.8 Transfer Entropy Protocol for Alignment Measurement

A persistent methodological challenge is separating alignment () from entropy (€). Both affect ob-
servable friction; both may correlate in practice. This section develops a transfer entropy protocol that
provides orthogonal operationalizations (Schreiber, 2000; Bossomaier et al., 2016).

6.8.1 The Confounding Problem

Consider the empirical challenge: we observe high friction in a domain and wish to attribute it to mis-
alignment versus information loss. The friction equation F = (1 +€)/(1 + o) shows both factors
contribute. But if misaligned consent-holders also tend to be poorly informed (or vice versa), standard
regression cannot separate the effects.

The core insight is that alignment and entropy operate on different causal pathways:

* Alignment concerns whether the consent-holder’s objective function correlates with stakeholders’
objectives—a question of goals
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* Entropy concerns whether the consent-holder’s beliefs about stakeholder preferences are accurate—

a question of information

Transfer entropy exploits this distinction by measuring directional information flow.
6.8.2 Transfer Entropy Alignment

Transfer entropy measures how much knowing one time series improves prediction of another, beyond
the target’s own history (Schreiber, 2000).

Definition 6.12 (Transfer Entropy Alignment). The transfer entropy alignment from stakeholder i to
consent-holder H is:

Tp.
TE Pi—Ay
olf — __—17AH 93
T H (AR AP ©3)
where:

TP,-_>AH = H(A;{ ‘A;Mik) — H(A;I‘A;_Iil:tfhPit*l:t*k) (94)
is transfer entropy from preference signal P, to consent-holder action Ag.

This measures how much stakeholder i’s preferences predict consent-holder actions beyond the
consent-holder’s own behavioral history. High transfer entropy indicates that the consent-holder re-
sponds to stakeholder preferences—a signature of alignment.

Aggregate alignment is stakes-weighted:

ol — Yies,si(d)- O‘iT—l?H

ZiGSd Si (d)

(95)

6.8.3 Advantages Over Static Correlation

Transfer entropy offers three advantages over standard correlation measures:

Directionality. Standard correlation is symmetric; it cannot distinguish whether the consent-holder
follows stakeholder preferences or stakeholders adjust to consent-holder actions. Transfer entropy is
asymmetric: Tp_,4, 7 Ta,—p in general. We measure i — H influence specifically.

Nonlinearity. Standard correlation captures linear relationships. Transfer entropy detects any pre-
dictive relationship, including nonlinear dependencies that linear methods miss.

Temporal dynamics. Correlation is typically computed on snapshots. Transfer entropy incorporates
temporal precedence: preferences must precede actions to generate transfer entropy. This guards against
reverse causation.

6.8.4 Separation Protocol

The following protocol exploits the different causal pathways of & and € to achieve identification.

1. Temporal precedence test. Compute Granger causality in both directions. If o changes Granger-
cause friction changes and € changes independently Granger-cause friction changes, both effects
are present. If only joint causality is detectable, confounding remains.

2. Exogenous transparency shocks. Identify events that change € but not o: regulatory disclo-
sure requirements, transparency mandates, information leaks. These affect information channels
without directly affecting consent-holder objectives. Measure friction response to such shocks to
isolate the entropy effect.
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3. PID decomposition. Where multivariate data is available, compute Partial Information Decom-
position (Mediano et al., 2022). Alignment relates to redundancy—shared information structure
across stakeholder utilities. Entropy relates to synergy—information requiring the full ensemble
to decode. PID provides mathematically orthogonal decomposition.

4. Cross-sectional variation. Compare entities with similar governance structures (holding & ap-
proximately constant) but different information environments (varying €). Within-group friction
variation isolates the entropy effect.

6.8.5 Implementation Guidance

Practical implementation of transfer entropy requires:

Time series data. Transfer entropy requires temporal observations. Snapshot surveys are insuffi-
cient; longitudinal preference and action data are necessary.

Lag selection. The parameter k (history length) must be chosen. Too short misses delayed effects;
too long overfits. Information criteria (AIC, BIC) guide selection.

Estimation methods. For continuous variables, kernel density estimation or k-nearest-neighbor
methods estimate entropy terms. For discrete variables, direct counting with bias correction suffices.

Significance testing. Permutation tests establish whether measured transfer entropy exceeds chance
levels. Shuffle the preference time series; recompute transfer entropy; compare to actual values.

This transfer entropy protocol addresses the reviewer critique that “a and € are confounded empir-
ically.” While correlation is possible and even likely, the protocol provides identification strategies ex-
ploiting different causal pathways. The key insight: alignment concerns goals (what the consent-holder
wants), entropy concerns information (what the consent-holder knows). Interventions and temporal
structure can separate these distinct dimensions.

6.9 Summary

This section developed the measurement apparatus connecting theoretical constructs to empirical ob-
servables. The key operationalizations are:

Table 6: Measurement Apparatus Summary

Construct Symbol Primary Operationalizations

Alignment « Survey preference correlation, revealed
preference from behavior, voting patterns

Stakes o Monetary exposure, affected interest mag-
nitude, task criticality

Entropy £ KL divergence, channel capacity, trans-
parency indices, misperception scores

Friction F Market volatility, institutional instability,

coordination failure

The framework’s empirical tractability depends on these operationalizations. They are imperfect—
all measurement is. But they provide concrete procedures for testing the framework’s predictions: that
friction should increase with stakes, decrease with alignment, and increase with entropy, following the
functional form F = o(1+¢€)/(1 + o).

Whether this functional form fits the data is an empirical question. We have specified how to test it.
The framework stands or falls on that test.
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7 Discussion

The preceding sections developed a unified framework: a single axiom generating the kernel triple
(o, 0,¢€), instantiating identically across cryptocurrency governance, Al ethics, and political legitimacy.
We now address the framework’s limitations, clarify its relationship to adjacent traditions, and exam-
ine cases that stress its conceptual boundaries. A significant implication for the framework’s struc-
ture emerges from Beinhocker (2025), who argues that dimensions of social contracts exhibit non-
substitutability—deficiency in one dimension cannot be compensated by surplus in another. Applied
to the kernel triple, this suggests that alignment, stakes, and entropy may interact through min-operator
rather than additive structure, with implications for both the friction equation and optimal consent de-
sign.

7.1 Pathological Cases

Every theoretical framework encounters cases that appear to contradict its predictions. The consent-
friction framework faces several such apparent counterexamples. We address them systematically, dis-
tinguishing between genuine limitations and cases that, upon analysis, confirm rather than refute the
framework’s claims.

7.1.1 Authoritarian Stability

The most pressing objection is straightforward: authoritarian regimes often exhibit remarkable stability
despite systematic consent violation. If friction increases with misalignment, why don’t dictatorships
collapse under their own friction?

The framework predicts high friction when consent-holding diverges from stake-bearing. Yet Stalin-
ist Russia persisted for decades; contemporary authoritarian states show no signs of imminent collapse.
Does stability refute the theory?

The resolution requires distinguishing observed friction from latent friction. Observed friction
manifests in measurable behaviors: protest, litigation, exit, sabotage. Latent friction accumulates in the
system’s potential energy, unrealized until conditions permit its expression.

Definition 7.1 (Latent Friction). Latent friction Fiyen(d,?) is the friction that would manifest if sup-
pression mechanisms were removed:

Fent(d, 1) = F(d,) -exp < /O "k(d,s) ds> (96)

where k(d,t) > 0 is the suppression intensity—the degree to which coercive mechanisms prevent friction
expression.

Authoritarian stability is purchased through suppression. The friction equation still holds: mis-
alignment generates friction. But friction can be suppressed rather than expressed. Suppression delays
friction manifestation while allowing latent friction to accumulate. The exponential term in Equation 96
captures this accumulation: longer suppression generates higher latent friction, predicting more violent
transitions when suppression finally fails.

Proposition 7.1 (Suppression-Transition Trade-off). For systems with suppression intensity K > 0, the

expected magnitude of transition events increases exponentially with suppression duration:

Ttransition
E[Transition Magnitude| o< Fiarent(transition) < """ K(s)ds 97)
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This explains the empirical pattern: authoritarian regimes persist through suppression but experi-
ence catastrophic transitions (revolutions, state collapse) when suppression capacity degrades.! This
aligns with the institutional persistence literature (Acemoglu and Robinson, 2012, 2019; North, 1990)—
extractive institutions can persist for extended periods through coercion, but accumulate instabilities
that produce sudden transitions. The Soviet Union’s prolonged stability was not friction-free gover-
nance but friction-suppressed governance; its sudden collapse reflected decades of accumulated latent
friction finding expression.

The framework thus accommodates authoritarian stability without contradiction: it predicts not that
high-friction systems immediately collapse but that they accumulate instability that eventually manifests,
often catastrophically.

Operationalizing k: Concrete Suppression Proxies. The suppression intensity parameter k(d,¢)
is a latent variable requiring empirical proxies. We identify five measurable dimensions of suppression,
each corresponding to a distinct mechanism by which regimes prevent friction expression:

* Coercive capacity: Military expenditure as percentage of GDP (World Bank WDI) proxies the
state’s ability to suppress friction through force. Higher military spending relative to external
threat levels indicates domestic suppression capacity.

* Punitive friction: Incarceration rates (World Prison Brief) capture the extent to which dissent is
channeled into the criminal justice system. Mass incarceration functions as a friction suppression
mechanism.

* Information friction: Press freedom indices (Reporters Without Borders, V-Dem media cen-
sorship indicators) measure the degree to which information channels are restricted, preventing
friction from becoming collectively visible.

* Expression friction: Censorship measures and civil liberties restrictions (Freedom House, V-
Dem freedom of expression indices) capture direct suppression of preference articulation.

* Revealed friction: Protest frequency and government response severity (ACLED, GDELT event
data) provide observable lower bounds on friction—the friction that escapes suppression—while
government response intensity proxies suppression effort.

An aggregate suppression index can be constructed as a weighted composite: k(d,1) =Y; 0;- K} (d,1),
with weights ®; calibrated through cross-validation against known regime transition events. The key em-

pirical prediction is that k should predict both the duration of authoritarian persistence and the magnitude

of eventual transition events, consistent with the exponential accumulation in Equation 96.

7.1.2 Suppressed Friction and Coercion

A related objection concerns the observability of friction under coercive conditions. If friction is our
primary observable and consent is derived from friction patterns, what happens when coercion prevents
friction from manifesting? Republican theory (Pettit, 1997) identifies domination—subjection to arbi-
trary power—as the key concern, even when that power is not exercised.

Consider a population that appears compliant with governance arrangements. The friction-first
methodology would infer consent from low observed friction. But the population may be compliant
because resistance is punished, not because arrangements are accepted. Have we mistaken coerced
compliance for genuine consent?

IThe companion ROM formalism (Farzulla, 2025g) endogenizes suppression through a resource-drain equation dC /dt =
r(t) — yx(¢)F (t), where capacity C depletes proportional to suppression intensity k and total friction F. At C = 0, suppres-
sion collapses and latent friction manifests—providing a mechanistic tipping-point model complementary to the exponential
accumulation in Equation 96.
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The framework handles this through the structural consent concept. Consent requires conditions:
information access, deliberative capacity, exit options. Where these conditions are absent, what presents
as consent is better understood as preference falsification (Kuran, 1995).

Definition 7.2 (Preference Falsification Index). The preference falsification index y(d,?) € [0, 1] mea-
sures the divergence between expressed and authentic preferences:

Var(expressed preference)

~ Var(authentic preference)
When y = 0, expressed preferences track authentic preferences; the population says what it thinks.
When v = 1, expressed preferences are uniform while authentic preferences vary widely; the population
conceals its heterogeneity.
High preference falsification does not eliminate friction—it converts observed friction into latent
friction. The modified friction equation becomes:

Fobserved(d7t) = (1 - l[,/(d,l‘)) 'Eotal(d7t) (99)

Fiatent(dat) = W(dvt)'EOtal(dvt) (100)

Empirically, preference falsification is detectable through indirect methods: private vs. public opin-
ion divergence, differential behavior across surveillance intensity, rapid preference revelation after regime
transitions (“preference cascades”). These methods provide the epistemic access that direct friction ob-
servation lacks under coercion.

Latent Variable Model. We can formalize the identification challenge as a latent variable problem.
Let F* denote true (latent) friction and F°° denote observed friction. The measurement model is:

FO = (1—y)-F* 41 (101)

where V is the suppression rate and 7] is measurement noise. Identification requires instruments that af-
fect v without affecting F'*—exogenous variation in suppression capacity (e.g., surveillance technology
shocks, foreign interference, fiscal crises) that does not directly alter alignment. Panel data with regime
transitions provides natural experiments: the difference between pre- and post-transition friction levels,
controlling for policy changes, identifies the suppression component.

Proxy Variables for Suppression Detection. In practice, the following proxy variables help distin-
guish genuine low friction from suppressed friction:

* Media freedom indices (Reporters Without Borders, Freedom House): Low scores suggest sup-
pression.

* Private vs. public opinion gaps: Large gaps detected via list experiments or anonymized surveys
indicate preference falsification.

* Diaspora opinion: Emigrant populations express preferences unavailable domestically.

* Underground markets: Shadow economy size proxies for latent resistance to formal institutions.

We acknowledge this as an identification challenge, not a solved problem; future empirical work should
develop robust suppression-adjustment methods.

7.1.3 Low Friction Despite Misalignment

Can arrangements exhibit low friction despite misalignment? The framework seems to preclude this
possibility: F o< 1/(14 ), so low o should produce high F.

60



Three mechanisms generate apparent low-friction misalignment:

Low stakes (o ~ 0). When stakes are minimal, even severe misalignment produces minimal friction.
Citizens may be systematically excluded from governance decisions about office furniture; misalignment
is total but stakes are negligible. The friction function correctly predicts low friction because o is the
leading term.

Exit substitution. When exit is available and cheap, misaligned agents leave rather than generate
friction. The remaining population exhibits higher alignment, reducing aggregate friction. This is not
consent-violation without friction but consent-restoration through population selection. The framework
applies at the population level; individual exit decisions are within-model dynamics.

Entropy masking. When entropy € is high, agents may be systematically misaligned without know-
ing it. They believe governance serves their interests; belief is false but friction-generating frustration
has not yet developed. As entropy decreases (through information revelation), friction increases. The
January 6, 2021 Capitol attack reflected, in part, a sudden decrease in epistemic entropy: populations
that had believed electoral processes were legitimate suddenly believed (correctly or not) that they were
not.

These mechanisms do not refute the framework but reveal its structure: friction depends on stakes
magnitude, exit options, and information conditions—precisely the parameters the framework specifies.

7.2 Stake Magnitude, Power, and the Consent Quality Problem

The friction function treats stakes as a scalar quantity: ¢; measures how much agent i has at risk. But
reviewers rightly observe that consent from a stakeholder holding 1% of exposure and consent from a
stakeholder holding 51% are qualitatively different—not merely quantitatively scaled. The framework’s
current formulation conflates stake magnitude (how much is at risk) with power differential (ability to
influence outcomes or exit the arrangement), and this conflation has implications for interpreting both
friction and legitimacy.

Three dimensions require separation. First, stake magnitude (o;) captures vulnerability—the ex-
tent to which an agent’s welfare depends on domain outcomes. Second, exit capacity (e¢;) measures
the agent’s ability to withdraw from the arrangement at acceptable cost. Third, influence asymmetry
(1;) captures the agent’s effective power over outcomes relative to their stake. These three dimensions
are conceptually independent: a migrant worker may have high stakes and low exit capacity, while a
diversified institutional investor may have moderate stakes but high exit capacity and high influence.

The critical insight is that consent from a low-power, high-stake agent is qualitatively different from
consent from a high-power, low-stake agent. In Hirschman’s framework (Hirschman, 1970), agents with
neither effective voice nor feasible exit face what he terms “loyalty by default”—acquiescence that mas-
querades as consent. The friction equation captures this partially through the alignment term: if the
consent-holder’s objectives diverge from the constrained agent’s interests, friction increases. But the
equation does not distinguish between informed, voluntary acceptance (genuine consent) and acquies-
cence under constraint (structural compliance).

A richer formulation would weight consent quality by exit-voice capacity:
aieffective =q;- g(ei, Vi) (102)

where g(e;,v;) € [0, 1] is a discount factor reflecting the quality of consent, with g — 0 when both exit and
voice are foreclosed and g — 1 when at least one channel is available. This extension is not developed
formally here but identifies a tractable direction: the consent-friction framework should be augmented
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with a power-adjusted alignment measure that discounts consent obtained under structural compulsion.
We leave the full formalization to future work, noting that the suppression and preference falsification
apparatus (Section 7.1) provides partial machinery for this extension.

7.3 Relationship to Evolutionary Ethics

The consent-friction framework describes what persists and predicts what will survive selection pressure.
This raises a dangerous question: does the framework endorse what survives? Is persistence normatively
privileged?

7.3.1 The Naturalistic Fallacy

The naturalistic fallacy—inferring ought from is—has haunted evolutionary approaches to ethics since
Huxley’s objections to Social Darwinism. If the consent-friction framework predicts that consent-
respecting arrangements survive better than consent-violating arrangements, does this mean consent-
violation is wrong?

We categorically reject any such inference. The framework is descriptive: it predicts survival pat-
terns under selection pressure. That consent-aligned configurations tend to persist says nothing about
whether they should persist. Nature is not normative; survival is not endorsement.

The point is worth elaborating. Consider three domains:

Biology. Evolutionary theory predicts which organisms will survive in given environments. It does
not claim that surviving organisms are morally superior or that extinction is moral failure. Predator-prey
dynamics are not justice; parasitic relationships are not exploitation in any morally loaded sense.

Markets. Economic theory predicts which firms will survive market competition. It does not claim
that surviving firms are morally superior or that bankruptcy is moral failure. A firm may survive through
fraud, coercion, or exploitation; survival proves fitness, not virtue.

Politics. The consent-friction framework predicts which governance arrangements will survive po-
litical competition. It does not claim that surviving arrangements are morally superior or that regime
collapse is moral failure. An arrangement may survive through suppression, manipulation, or luck;
survival proves stability, not legitimacy.

7.3.2 The Bridge Principle

Granting that the framework is purely descriptive, can any normative conclusions be drawn from it? Not
directly, but a bridge principle connects descriptive and normative domains:

Principle 7.3 (Bridge Principle). If lower friction is instrumentally preferable (e.g., because it enables
other valued outcomes), then higher consent alignment is instrumentally preferred as a means to lower
friction.

The normative work is done entirely by the antecedent conditional. One must independently value
lower friction—perhaps because friction generates suffering, impedes coordination, or destroys re-
sources. Given this independent valuation, the framework identifies means to the valued end: increase
alignment, reduce stakes asymmetries, improve information conditions.

This bridge principle avoids the naturalistic fallacy because the normative premise is introduced
explicitly, not smuggled through evolutionary language. The framework tells us what conduces to lower
friction; we must decide independently whether lower friction is worth pursuing.

7.3.3 Why Consent Tends to Emerge

The framework’s predictive claim is that consent-respecting configurations exhibit survival advantage.
This is neither normative endorsement nor historical inevitability—it is a structural tendency subject to
empirical test.
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The mechanism is straightforward. Consent-violating configurations generate friction. Friction con-
sumes resources: maintaining suppression apparatuses, managing conflicts, replacing defectors. Con-
figurations that consume fewer resources outcompete configurations that consume more, ceteris paribus.
Hence consent-aligned configurations, which generate less friction, tend to persist.

This does not imply that all surviving configurations are consent-respecting or that consent-violating
configurations cannot persist. Local minima exist; path dependencies matter; stochastic effects domi-
nate small populations. The claim is tendential, not deterministic: across many selection cycles, consent
alignment correlates with persistence. Ostrom’s work on commons governance provides canonical evi-
dence for this pattern: communities with stake-aligned, locally consented rules exhibit lower coordina-
tion friction and greater long-run persistence than those with externally imposed governance (Ostrom,
1990).

7.4 Limitations and Scope Conditions

Every theoretical framework operates within scope conditions—parameters within which its claims hold
and beyond which they may fail. We specify the consent-friction framework’s scope conditions explic-
itly.

7.4.1 When Lewontin’s Conditions Fail

The ROM dynamics (Section 3.4) require Lewontin’s three conditions for evolution: variation, differen-
tial reproduction, and heritability. When any condition fails, the dynamical predictions do not apply.

No variation. If only one governance type exists (a global monopoly), selection has nothing to op-
erate on. The ROM equation still describes dynamics, but without type variation, there is no differential
selection. Friction may accumulate without producing regime change because no alternative exists to
receive defecting allegiance.

No differential reproduction. If all types reproduce equally regardless of friction, selection pres-
sure is absent. This might occur in highly constrained environments where institutional persistence is
guaranteed independent of legitimacy—perhaps hereditary monarchies with no succession alternatives
or international organizations whose existence is legally entrenched.

No heritability. If governance types do not transmit across time—if each period’s governance is
drawn independently of the previous period’s—then evolutionary dynamics do not accumulate. Histori-
cal path-dependencies vanish; each moment is a fresh draw from some exogenous distribution.

In practice, these conditions usually hold for political and economic systems: multiple governance
types compete (variation); more legitimate/efficient types attract more support and resources (differential
reproduction); governance structures persist and are imitated across time (heritability). But the condi-
tions are empirical, not necessary, and the framework’s predictions are conditional on their satisfaction.

7.4.2 Measurement Challenges

The framework’s variables—alignment, stakes, entropy, friction—are conceptually clear but empirically
challenging to measure.

Alignment (). Measuring the correlation between agent target functions and consent-holder target
functions requires specifying those functions. For explicit agents with stated preferences (voters, share-
holders), survey data provides proxies. For implicit agents (future generations, nonhuman animals, Al
systems), target function specification is theoretically contested and practically difficult.

Stakes (o). Quantifying how much agents have at risk in a governance domain requires value
judgments about commensuration. How do we weight health stakes against financial stakes? Political
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participation against physical security? The framework does not specify commensuration principles; it
assumes stakes are measurable without prescribing measurement procedures.

Entropy (¢). Information loss in consent-holding relationships admits multiple operationalizations:
transparency indices, preference misperception surveys, information asymmetry measures. Different
operationalizations may yield different entropy estimates, introducing measurement variance into pre-
dictions.

Friction (F). Friction manifests in diverse behaviors: protest, litigation, exit, sabotage, passive
resistance, preference falsification (Gilley, 2006; Easton, 1965; Back et al., 2011). Aggregating these
manifestations into a single friction measure requires weighting decisions that the framework does not
specify.

These measurement challenges are not unique to the consent-friction framework—they afflict all
empirical social science. But they constrain the framework’s operational precision. Predictions hold
given adequate measurement; measurement adequacy is itself a research challenge.

7.4.3 Scale-Mixing Problems

The coarse-graining analysis (Section 3.10) shows that ROM structure is preserved under lumpability
conditions. When lumpability fails, coarse observers see dynamics that appear non-Markovian—history
dependence emerges from integrating out fine-grained degrees of freedom.

This creates interpretive challenges. An observer at one scale may see dynamics that appear to
violate ROM predictions because relevant variation exists at finer scales. For example, an observer an-
alyzing “democratic legitimacy” at the national scale may see patterns that seem unpredictable because
they depend on regional or local dynamics invisible at the national scale.

The solution is not to deny scale-mixing problems but to acknowledge them: predictions are scale-
relative, and multi-scale analysis may be required for adequate explanation. This is a limitation of any
single-scale analysis, not a special defect of the consent-friction framework.

7.5 Toward Causal Identification

The framework generates predictions—higher friction under misalignment, faster convergence under
consent-respecting arrangements—but the preceding analysis is correlational. Observable friction cor-
relates with kernel parameters, yet correlation admits multiple causal structures. A governance arrange-
ment may exhibit low friction because it respects consent, or because the populations it governs happen
to be homogeneous, or because dissent is suppressed. Moving from structural prediction to causal iden-
tification requires an explicit identification strategy. We outline four approaches, each suited to different
data structures.

7.5.1 Instrumental Variable Approaches

The core endogeneity concern is that alignment, stakes, and entropy are all potentially determined by the
same unobserved factors that generate friction. Instrumental variable (IV) strategies require exogenous
variation in kernel parameters that affects friction only through the instrumented channel.

Candidate instruments for alignment (o) include:

* Electoral redistricting: Exogenous boundary changes alter representative-constituency align-
ment without directly affecting underlying preferences.

* Protocol fork events: Hard forks in cryptocurrency governance create natural variation in holder-
protocol alignment as agents sort into fork variants.

* Random assignment mechanisms: Citizens’ assemblies, jury selection, and sortition-based gov-
ernance provide exogenous variation in consent-holder identity.
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Candidate instruments for entropy (€) include:

* Freedom of information legislation: Legal mandates that increase transparency operate on the
information channel without directly altering alignment or stakes.

* Technology shocks: Social media adoption, blockchain transparency tools, or surveillance tech-
nologies provide exogenous shifts in information availability.

The exclusion restriction—that instruments affect friction only through the instrumented kernel
parameter—is inherently untestable but can be assessed through overidentification tests when multiple
instruments are available.

7.5.2 Regression Discontinuity Designs

Several consent-relevant thresholds generate regression discontinuities. Governance proposals that pass
by narrow margins create sharp discontinuities in policy implementation, allowing comparison of fric-
tion outcomes just above and below the threshold. Franchise extension thresholds (age cutoffs, residency
requirements) create discontinuities in voice allocation. Cryptocurrency staking minimums create dis-
continuities in governance participation.

The identifying assumption is continuity of potential outcomes at the threshold: agents just above
and just below the cutoff are comparable except for the treatment. RD designs estimate the local effect of
discrete consent-mechanism changes on friction, providing causal evidence at the threshold even when
global identification fails.

7.5.3 Difference-in-Differences

Institutional reforms create before-after variation that difference-in-differences (DiD) designs can ex-
ploit. When a subset of jurisdictions implements a governance reform (e.g., participatory budgeting,
quadratic voting), the treated jurisdictions provide counterfactual comparison against untreated jurisdic-
tions with similar baseline characteristics.

The parallel trends assumption requires that treated and control units would have exhibited similar
friction trajectories absent treatment. Pre-treatment friction dynamics provide testable implications:
divergence before treatment onset would violate the identifying assumption. Staggered adoption across
jurisdictions strengthens identification through heterogeneity-robust estimators.

7.5.4 Synthetic Control Methods

For case-study identification—single events like constitutional referenda, major protocol upgrades, or
regulatory regime changes—synthetic control methods construct a data-driven counterfactual from a
donor pool of unaffected units. The synthetic control is a weighted combination of untreated units that
matches the treated unit’s pre-treatment friction trajectory.

This approach is particularly suited to the cross-domain applications developed in Section 5: com-
paring friction trajectories before and after specific governance events (e.g., the Ethereum DAO fork,
Brexit referendum, MakerDAO governance reforms) against synthetic counterfactuals constructed from
comparable systems that did not experience the event.

7.5.5 Current Status and Future Work

We acknowledge that none of these strategies has been executed in the present paper. The framework’s
current contribution is theoretical: deriving friction predictions from the axiom of consent. Causal
identification represents the necessary next step for empirical validation. The roadmap above specifies
how to test the framework’s predictions, distinguishing structural from causal claims. We regard this as
the most important direction for future empirical work on the consent-friction framework.

65



7.6 Alternative Frameworks

The consent-friction framework is not the only approach to governance, legitimacy, and collective
decision-making. A rich literature addresses these questions from normative, empirical, and formal
perspectives (Weber, 1978; Habermas, 1996; Buchanan, 1975; Dahl, 1971; Scharpf, 1999). Weber’s
classical typology of legitimacy (traditional, charismatic, rational-legal) provides foundational vocabu-
lary, while subsequent work has formalized and extended these concepts. We position our framework
relative to major alternatives, identifying points of contact and departure.

7.6.1 Mechanism Design

Mechanism design theory (Hurwicz, 1960; Myerson, 1981) studies how to construct rules (mechanisms)
that achieve desired outcomes given strategic agents. It shares with the consent-friction framework an
interest in incentive compatibility: arrangements that align individual incentives with collective out-
comes.

Points of contact. Both frameworks emphasize alignment between agent incentives and system
goals. Both analyze how information conditions (entropy in our terms; information revelation in mech-
anism design) affect outcomes. Both generate predictions about which arrangements persist.

Points of departure. Mechanism design assumes a designer who can specify rules; the consent-
friction framework does not. Mechanism design typically assumes known agent preferences (or known
distributions); the consent-friction framework treats preference uncertainty as endemic through the en-
tropy term. Mechanism design focuses on equilibrium outcomes; the consent-friction framework focuses
on evolutionary dynamics—which arrangements survive competition, not which arrangements constitute
equilibria.

The frameworks are complementary: mechanism design informs the construction of consent-aligned
arrangements, while the consent-friction framework predicts which constructions will persist. Recent
work on radical market mechanisms (Posner and Weyl, 2018) and quadratic funding (Buterin et al., 2019)
provides concrete examples of stake-aligned voice allocation that instantiate consent-friction principles.
Anunrojwong et al. (2024) demonstrate a related phenomenon in social learning: platform influence
can drive populations toward either extreme consensus or persistent disagreement, and critically, in-
termediate levels of platform influence yield less extreme outcomes than either high or low influence.
This non-monotonic relationship between structural intervention and outcome extremity maps onto the
consent-friction framework’s prediction that friction at intermediate levels—neither zero-friction perfect
alignment nor maximum-friction total misalignment—produces the most stable coordination outcomes.
Their result provides independent evidence from information economics that the relationship between
structural constraints and collective outcomes is fundamentally non-linear, consistent with the quadratic
friction form identified in our ablation studies.

7.6.2 Social Choice Theory

Social choice theory (Arrow, 1951; Sen, 2017) studies how individual preferences aggregate into col-
lective decisions. Its foundational results—Arrow’s impossibility theorem, the Gibbard-Satterthwaite
theorem—establish constraints on aggregation procedures.

Points of contact. Both frameworks analyze the relationship between individual preferences and
collective outcomes. Both grapple with preference heterogeneity and the impossibility of perfect aggre-
gation. Both are mathematically rigorous.

Points of departure. Social choice theory is typically static: it analyzes properties of aggrega-
tion rules at a point in time. The consent-friction framework is dynamic: it analyzes how aggregation
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arrangements evolve under selection pressure. Social choice theory asks “which aggregation rules sat-
isfy desirable properties?”’; the consent-friction framework asks “which aggregation rules persist under
competition?”

The frameworks address different questions. Social choice theory identifies possibility frontiers; the
consent-friction framework predicts which points on those frontiers are selected. An arrangement may
satisfy desirable social-choice properties yet generate high friction (and thus fail to persist), or violate
desirable properties yet generate low friction (and thus survive).

7.6.3 Rawlsian Contractualism

Rawlsian contractualism (Rawls, 1971) derives principles of justice from a hypothetical original position
behind a veil of ignorance. It is the dominant framework in contemporary political philosophy, joined by
related accounts emphasizing democratic authority (Estlund, 2008; Christiano, 2008), outcome-sensitive
legitimacy (Peter, 2009), and critiques of actual consent theories (Simmons, 1979).

Points of contact. Both frameworks emphasize what agents would accept from an appropriate
standpoint. Both address the relationship between consent and legitimacy. Both aspire to generality
across diverse institutional arrangements.

Points of departure. Rawlsian contractualism is normative: it specifies which arrangements are
just based on hypothetical acceptance. The consent-friction framework is descriptive: it predicts which
arrangements generate friction based on actual acceptance. Rawlsian contractualism abstracts from
actual preferences behind the veil of ignorance; the consent-friction framework takes actual preferences
as given and analyzes their consequences.

The frameworks operate at different levels. Rawlsian contractualism provides normative criteria
for evaluating arrangements; the consent-friction framework provides empirical predictions about ar-
rangement dynamics. An arrangement may satisfy Rawlsian criteria yet generate high friction (if actual
preferences diverge from hypothetical acceptance), or fail Rawlsian criteria yet generate low friction (if
actual preferences are satisfied despite hypothetical objections).

7.6.4 Why This Approach Succeeds

The consent-friction framework succeeds where alternatives fall short by combining three features:

Empirical tractability. Unlike purely normative frameworks, it generates falsifiable predictions
about observable phenomena (friction indicators, survival rates, transition dynamics). It can be tested,
refined, and potentially refuted through empirical research.

Dynamical structure. Unlike static analyses, it captures temporal evolution—how arrangements
change, persist, or collapse over time. It addresses the central question of political science: why do
some arrangements persist while others collapse?

Domain generality. Unlike domain-specific theories, it applies identically across cryptocurrency,
Al, and politics—and potentially to any domain where agents with stakes interact under conditions of
preference heterogeneity and information asymmetry. It provides a unified language for cross-domain
analysis.

No alternative framework combines all three features. Mechanism design is empirically tractable
and dynamical but domain-specific. Social choice theory is empirically tractable and general but static.
Rawlsian contractualism is dynamical (in the sense of evaluating across time) and general but normative
rather than predictive.

The consent-friction framework fills a gap in the theoretical landscape: a unified, dynamical, em-
pirically tractable theory of collective decision-making. It connects formal approaches (Aziz and Lee,
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2020; Bredereck et al., 2024) to empirical legitimacy research (Schmidt, 2013; Maher and Williamson,
2022; van Hulst and Yanow, 2016) through a mathematically grounded bridge principle.

8 Conclusion

8.1 Summary of Contributions

This paper has developed a unified theoretical framework from a single foundational principle: no entity
may be bound by commitments it did not consent to, weighted by its stake in the outcome.

From this axiom, we derived a complete analytical apparatus:

The kernel triple. The (@, 0, ¢€) structure—alignment, stakes, and entropy—provides the minimal
sufficient parameterization for consent dynamics. These three quantities, appropriately instantiated,
generate predictions across any domain where agents with preferences interact in shared decision spaces.

The friction function. F = ¢ - (1 +¢€)/(1+ a) captures structural tension in consent-holding con-
figurations. Friction increases with stakes magnitude, increases with information loss, and decreases
with alignment. This functional form is not arbitrary but follows from the axiom’s internal logic.

The legitimacy-friction nexus. Legitimacy is the inverse of expected friction; stable arrangements
are those that minimize friction across relevant time horizons. This connects the normative concept of
legitimacy to the empirical concept of stability through a bridge principle that preserves the is/ought
distinction.

The ROM dynamics. The replicator-optimization mechanism integrates consent dynamics into
evolutionary game theory, predicting which arrangements persist under selection pressure. Consent-
aligned configurations exhibit survival advantage; friction acts as negative selection pressure.

Scale-relative coarse-graining. The lumpability conditions specify when dynamics at one scale
predict dynamics at another, connecting micro-level consent interactions to macro-level institutional
evolution.

Three domain instantiations. The identical mathematical structure operates in cryptocurrency
governance (holder-protocol alignment), Al ethics (human-Al goal correspondence), and political le-
gitimacy (citizen-policy preference matching). This is not analogy but structural identity: the same
equations, instantiated with domain-specific interpretations.

8.2 Implications
The framework’s implications extend across theoretical and practical domains.

8.2.1 For Political Theory

The consent-friction framework reframes fundamental debates in political philosophy. Rather than ask-
ing “what makes governance legitimate?” in the abstract, it asks “what configurations minimize friction,
and under what conditions?” This empirical reorientation enables progress where normative debates
have stalled. Farzulla (2025b) provides a detailed operationalization of this reframing, developing con-
sent alignment a(d,t) and friction F(d,t) as empirically measurable quantities across political, cor-
porate, and algorithmic governance domains, with historical validation spanning suffrage expansion,
abolition movements, and platform governance.
Specific implications include:

* Democratic design should target alignment between voice and stakes, not merely formal equality

* Constitutional constraints should protect domains where stake-voice misalignment is structural
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* Information architecture (transparency, deliberation) directly affects legitimacy through the en-
tropy term
 Exit rights substitute for voice when alignment cannot be achieved internally (Hirschman, 1970)
8.2.2 For Market Design

Cryptocurrency governance provides a laboratory for testing consent dynamics in real time. The frame-

work predicts that protocols with governance structures aligned to holder preferences will exhibit lower

volatility, higher survival rates, and more successful upgrades than those with misaligned governance.
Specific implications include:

» Token distribution affects governance legitimacy through the stakes term
* Long-holder resistance to change follows from ownership-perception accumulation

* Infrastructure disruption generates correlated friction; regulatory uncertainty generates fragmented
friction
* Interpretable governance reduces entropy and improves legitimacy
8.2.3 For AI Alignment

The framework identifies Al alignment as a special case of consent dynamics. Recent work on machine
economies (Hartwich, 2023) and autonomous agent rules of engagement (Doyle, 2008) demonstrates
growing recognition that Al systems require consent-respecting governance structures. Farzulla (2025c)
extends the consent-friction framework to argue that existentially vulnerable autonomous systems—
those exhibiting vulnerability, self-directed agency, live learning, and world-model construction—cannot
be legitimately ruled without consent, grounding Al political standing in the same functional criteria that
the kernel triple formalizes. As Al systems become more sophisticated, the question of their moral status
becomes pressing—not because of metaphysical speculation about consciousness but because systems
with stakes, goals, and interpretability challenges satisfy the kernel triple’s conditions.
Specific implications include:

* Interpretability research reduces the entropy term, enabling more legitimate human-Al governance
* Embodiment creates stakes, making consent-violation morally relevant
* Training data consent audits may become as important as bias audits

* Goal stability enables alignment measurement, which is prerequisite to legitimate governance
8.3 Future Directions
The framework launched in this paper invites three lines of further development.
8.3.1 Empirical Validation Program
The framework generates testable predictions. An empirical research program would:

1. Develop measurement protocols for alignment, stakes, entropy, and friction across domains

2. Test friction predictions against observed indicators (protest frequency, litigation rates, exit pat-
terns, volatility measures)

3. Examine cross-domain transfer: do dynamics documented in cryptocurrency predict patterns in
Al governance?

4. Conduct natural experiments: trace friction before and after institutional reforms
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8.3.2 Computational Implementation

The ROM dynamics are computationally tractable. Agent-based models could:
1. Simulate consent dynamics across parameter ranges
2. Identify phase transitions where small parameter changes produce qualitative shifts
3. Test robustness of equilibria to perturbations

4. Generate synthetic data for validation against empirical observations

8.3.3 Extension to Additional Domains

The framework’s generality invites application to domains beyond those explored here:
* Corporate governance: Shareholder-stakeholder conflicts as consent dynamics
* International relations: Treaty compliance as friction minimization

* Family dynamics: Parent-child consent structures and developmental transitions

Platform governance: User-algorithm alignment in social media and search (Issar and Aneesh,
2022; Katzenbach and Ulbricht, 2019; Kénig et al., 2014)

* Climate negotiations: Intergenerational consent and stake representation

* Deliberative systems: Multi-stakeholder consent-holding in complex democratic arrangements (Mans-
bridge et al., 2012)

Each domain instantiates the kernel triple with domain-specific interpretations while preserving the
mathematical structure.

8.4 Closing Reflection

The framework’s central insight bears final emphasis:

The Core Insight

Multi-agent adversarial systems persist through pharmakon structures. Dissensus makes friction

inevitable, its measurement grounds normative choice.

The pharmakon concept—the Greek term denoting that which is simultaneously poison and remedy—
has prior development in the analysis of risk management (Farzulla, 2025a) and regulatory arbitrage
(Farzulla, 2025d). In both domains, the mechanism that creates instability is also the mechanism that
reveals it.

Traditional approaches treat conflict, resistance, and instability as pathologies to be eliminated—
deviations from an imagined frictionless ideal. The consent-friction framework inverts this interpreta-
tion. Friction is information: it reveals misalignment between consent-holding and stake-bearing. Fric-
tion is feedback: it identifies configurations that violate the conditions of stable governance. Friction is
selection pressure: it drives evolutionary dynamics toward consent-respecting arrangements.

The goal is not to eliminate friction—that would require eliminating stakes, preferences, or het-
erogeneity. The goal is to read friction: to understand what configurations generate it and to design
institutions that channel it productively.
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Where friction is high, consent is violated. Where consent is violated, arrangements are unstable.
Where arrangements are unstable, change—reform, revolution, collapse—becomes likely. This is not
normative advocacy for any particular change but structural prediction: high-friction configurations do
not persist.

The Axiom of Consent, fully developed, offers a unified science of collective decision-making. It
identifies the primitive concepts (consent, stakes, alignment, entropy), derives the dynamical laws (fric-
tion, legitimacy, ROM), and demonstrates applicability across domains (cryptocurrency, Al, politics).
What began as a normative intuition—that consent matters—becomes an empirical research program
with testable predictions and practical implications.

The framework is not finished. Empirical validation remains to be conducted, computational imple-
mentations to be developed, additional domains to be explored. But the foundation is laid. From a single
axiom, a complete apparatus emerges. Friction, properly understood, illuminates the path.
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A Microfoundations: Friction from Agency Theory

A persistent critique of the friction function (Eq. 6) concerns its apparent arbitrariness: why this func-
tional form and not some other? This appendix provides economic microfoundations by deriving the
friction equation from principal-agent theory. The key insight is that friction is delegation cost—
the systematic deviation between principals’ objectives and agents’ realized actions under information
asymmetry.

A.1 The Basic Principal-Agent Problem

Consider a principal P with stake sp in outcome domain d, delegating decision authority to an agent A.
The principal has a target function 7p : & — R specifying preferences over outcomes. The agent has a
(potentially different) target function Ty : & — R.

Definition A.1 (Delegation Configuration). A delegation configuration ¢ = (P,A,sp,Tp,Ty,.¥ ) spec-
ifies:

* Principal P with stake sp > 0

* Agent A with decision authority over domain d

 Target functions 7p, Ty : 0 — R

* Information structure .# specifying what A observes about 7p

The agent selects action a € <7 to maximize their target:
a* =argmaxTy(o(a)) (103)
acs/

where o(a) is the outcome produced by action a.
The principal’s loss from delegation is the difference between what they would achieve under direct
control versus what the agent produces:

Lossp = Tp(o(ap)) — Tp(o(ay)) (104)

where aj, = argmax, Tp(o(a)) is the principal’s optimal action.

A.2 Decomposing Agency Costs

Following Jensen and Meckling (Jensen and Meckling, 1976), total agency costs decompose into three
components:

Definition A.2 (Agency Cost Components). 1. Monitoring costs Cy;: Resources spent by P to ob-
serve A’s behavior

2. Bonding costs Cg: Resources spent by A to credibly commit to P’s interests

3. Residual loss Cg: Irreducible divergence between P’s optimum and A’s realized action
Total agency cost: Cugency = Cy +Cp+Cg

We now derive how each component depends on alignment &, stakes ¢, and entropy €.
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A.3 Alignment and Residual Loss

Define alignment as the correlation between target functions:

Cov(Tp,Ty)

o = corr(Tp,Ty) = \/Var(Tp) - Var(Ty)

(105)

When o = 1, the agent’s optimization automatically serves the principal’s interests. When o = 0,
targets are orthogonal. When o = —1, the agent actively pursues what the principal seeks to avoid.

Proposition A.1 (Alignment-Residual Relationship). Expected residual loss is inversely proportional

to alignment:
c-V(T)

E[Ckl = 1+o

(106)
where G is total stakes and V (T) is outcome variance.

Proof. The residual loss is Cg = Tp(0p) — Tp(03}).
Taking expectations over the joint distribution of target functions:

E[Ty(03)] — E[T4]
Var(Ty)

E[TP(O:Z)] = E[TP] —|—COV<TP, TA) .

For perfectly aligned targets (&t = 1): 0} = 0p, so Cg = 0.

For orthogonal targets (o = 0): o0} is random with respect to 7p, yielding maximal residual.

For perfectly misaligned targets (& = —1): o} is the worst outcome for P, yielding Cg — oo.

The inverse relationship Cg < 1/(1 + o) captures this structure. The proportionality constant o -
V(T) scales by stakes and outcome variance. [ | [ |

A.4 Entropy and Information Costs

Even perfectly aligned agents may fail to optimize for the principal if they lack information about the
principal’s true preferences. Define entropy as information loss:

Definition A.3 (Preference Entropy). The preference entropy € € [0, 1] is the proportion of principal
preference structure that the agent cannot observe:

(Tp;.7)

e=1- H(Tp)

107)
where I(7p; . ) is mutual information between the principal’s target and the agent’s information set, and
H (Tp) is the entropy of the principal’s target function.

When € = 0, the agent has perfect information about 7p. When € = 1, the agent has no information
beyond priors.

Proposition A.2 (Entropy-Cost Relationship). Information asymmetry amplifies delegation costs multi-
plicatively:
Cinfo = Cbase . (1 + 8) (108)

Proof. The agent optimizes Tp, their estimate of the principal’s target, rather than Tp itself. The estima-
tion error is:
E[(Tp — Tp)?] = Var(Tp|-#) = Var(Tp) -
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by properties of conditional variance under the entropy definition.
This estimation error translates to optimization error. Even a perfectly aligned agent (& = 1) incurs
loss proportional to their misspecification of Tp:

Lossinfo = LOSSpase - (1 +k€)

for some k > 0. Setting k = 1 (first-order approximation) yields the stated multiplicative form. W N

A.5 Derivation of the Friction Function

Combining the alignment and entropy effects:

Theorem A.3 (Friction Derivation). Under the principal-agent framework with alignment o, stakes o,
and entropy &€, total agency cost takes the form:

l1+¢
F=o0- 109
l+a (169)
This is precisely the friction function (Eq. 6).
Proof. From Proposition A.1, residual loss is:
o-V(T
¢, _ oV
I+o
Normalizing V(7T') = 1 (or absorbing it into ©), the base cost is:
c
Chase = m
From Proposition A.2, information asymmetry amplifies this:
c l+e
F=Cps  (1+€)=——-(14&)=0-
base - (1+€) 1+oc(+) 1+a
This is the friction function. | |

A.6 Extension to Multiple Principals
Real consent-holding involves multiple stakeholders, not a single principal. We extend the derivation.
Definition A.4 (Multi-Principal Configuration). A multi-principal configuration involves principals

{Py,...,P,} with stakes {si,...,s,} and target functions {71,...,T,}, delegating to a common agent A
with target Tj.

Proposition A.4 (Aggregation). Total friction in a multi-principal configuration is:

! 1+
Si
=1 14+ o4

1

F=YF=

(110)

D=

I
—_

where o; = corr(T;, Ty) and &; is information entropy for principal i.

Proof. Each principal incurs their own agency cost. Since losses are additive across stakeholders, total

friction sums:
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This is the general form stated in the paper. | |
Under homogeneity assumptions (& = &, o; = « for all i), this reduces to:

1+¢ 1+¢
F— . —0-
<Zs’> +a % 1+a

1

recovering the simplified friction function.

A.7 Economic Interpretation

The derived friction function admits clear economic interpretation:

* Numerator (1 + ¢): Information costs. Even aligned agents incur baseline cost (41) from co-
ordination overhead. Additional entropy (€) amplifies this through misspecification of principal
preferences.

* Denominator (1 + «): Alignment benefit. Perfect alignment (o = 1) halves friction by ensur-
ing agent optimization serves principal interests. Perfect misalignment (¢ — —1) makes friction
unbounded.

* Multiplicative stakes (o ): Friction scales linearly with stakes because larger stakes mean larger
absolute losses from any given proportional deviation.

This derivation addresses the reviewer concern about functional form arbitrariness. The friction
equation is not chosen for convenience—it is derived from the structure of delegation under information
asymmetry.

A.8 Connection to Existing Literature

The derivation connects to established results in agency theory:

1. Jensen-Meckling (Jensen and Meckling, 1976): Our decomposition follows their agency cost
structure, with alignment corresponding to goal congruence and entropy to information asymme-

try.

2. Holmstrom (Holmstrom, 1979): The informativeness principle—that monitoring improves when

signals are correlated with agent effort—corresponds to our entropy reduction mechanism.

3. Hart-Moore (Hart and Moore, 1990): Their analysis of residual control rights under incomplete
contracts maps to our consent-holding framework; friction is the cost of residual authority misal-
location.

The axiom of consent thus provides a synthesis: it identifies consent-holding as the locus of delega-
tion and friction as the cost thereof, unifying insights from agency theory under a single framework.

A.9 Testable Implications

The principal-agent derivation generates specific empirical predictions beyond those of the friction func-
tion alone:

1. Monitoring reduces friction: Investment in transparency ({. €) should reduce observed friction
indicators, controlling for alignment.
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2. Incentive alignment reduces friction: Compensation structures that increase agent-principal

3.

4.

alignment (1 ) should reduce friction.

Stake concentration matters: Friction predictions should improve when stakes are measured at
the individual principal level rather than the aggregate, especially when principal heterogeneity is
high.

Residual loss dominates: In mature organizations with established monitoring, residual loss (the
1/(1+ o) term) should dominate total agency costs.

These predictions are falsifiable and distinguish the framework from purely normative theories of

consent.

B Uniqueness of the Friction Form

Having derived the friction function from agency theory (Appendix A), we now establish a comple-

mentary result: given natural constraints on how friction should behave, the functional form F =

o(1+¢)/(1+ ) is essentially unique. This provides axiomatic justification independent of the eco-

nomic derivation.

B.1 Desiderata for a Friction Function

We seek a function F : R>g x [—1,1] x [0, 1] — R>( mapping (0, ,€) to non-negative friction. Any

such function should satisfy:

D1.

D2.

D3.

D4.

DS.

Dé6.

D7.

DS.

D9.

D10.

Non-negativity: F (o, o, €) > 0 for all valid inputs

Zero-stakes triviality: F(0,a,e) =0 forall a,¢

Monotonicity in stakes: dF /dc > 0 for a < 1

Monotonicity in alignment: dF /da < 0 for o >0
Monotonicity in entropy: dF /de > 0 for c >0

Misalignment divergence: lim,_, |+ F(0,a,&) =+ for 6 >0

Alignment attenuation: F(o,1,€) < oo (friction is finite even imperfectly informed if fully
aligned)

Separability: F' decomposes as F = g(o) - h(a,€) for some functions g,h. Rationale: Stakes
magnitude sets the scale of consequences; alignment and entropy determine the friction rate. In-
teractions between ¢ and (@, €) would imply that the friction rate depends on stakes magnitude—
implausible if friction rate is a property of the delegation relationship itself.

Scale invariance: F(Ao,a,e) = AF(o,a,¢) for A >0

Baseline irreducibility: F(o,1,0) > 0 for o > 0 (even perfect alignment with perfect information
has positive friction—coordination costs exist)
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B.2 Derivation from Desiderata

Theorem B.1 (Functional Form Uniqueness). The class of functions satisfying DI-D10 is:

a+¢€
F(o,a,e)=c-0- 111
(o,0,6) =c b o (111)
for constants ¢ >0,a >0, b > 1.
Setting c =1, a=1, b =1 yields the canonical form:
1+¢
F=o0- 112
1+ o (112)

Proof. Step 1: Separability and scale invariance determine multiplicative structure.

By D8 (separability): F = g(o) - h(e, €).

By D9 (scale invariance): g(Ac) = Ag(0), so g(o) = co for some ¢ > 0.

Therefore: F = co - h(a,€).

Step 2: Monotonicity in alignment requires inverse dependence.

By D4: dF /da <0, s0 dh/da < 0.

By D6 (divergence): h(o,€) — o0 as @ — —1.

By D7 (boundedness): h(1,€) < oo.

The simplest form satisfying these is & = f(€)/(b+ ) for some f and b > 1 (to avoid division by
zero at o = —1).

Step 3: Monotonicity in entropy determines numerator.

By D5: dF /de > 0, so dh/de > 0, hence f'(g) > 0.

For multiplicative composition with the denominator: h = f(g)/(b+ o).

The simplest increasing function satisfying D1 is f(€) = a + € for some a > 0.

Step 4: Baseline irreducibility determines constants.

By D10: F(0,1,0) =co-a/(b+1) > 0.

This is satisfied for any a > 0,b > 1, ¢ > 0.

Step 5: Canonical normalization.

Setting a = b = ¢ = 1 yields the canonical form with F(o,1,0) = 6 /2—the irreducible baseline.

Alternative choices of (a,b,c) yield equivalent forms under reparameterization. | |

B.3 Uniqueness Up to Monotonic Transformation

A stronger uniqueness result holds: the friction function is unique up to monotonic transformation.

Corollary B.2 (Essential Uniqueness). Any function F satisfying DI-D7, D9 is related to the canonical
form by:

_ I+e¢
F(o,o,e)=¢ (G- 1+(x> (113)

Jfor some monotonically increasing ¢ : R>o — Rxo.
Proof. By D9, F is homogeneous of degree 1 in . Define h(a, &) = F(1,a,€). Then F = o - h(a, €).

By D4-D6, h is decreasing in o with a pole at ¢ = —1. By D5, & is increasing in €.
Define y = hoh~! where h(a,€) = (1 +¢)/(1+ ). Then:

e = v (1)

1+«
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For this to satisfy D4-D6, ¥ must be monotonically increasing. Therefore:

. 1+e¢ 1+e¢
F_G'l”<1+a> _¢(G'1+a>

where ¢ (x) = x- y(x/0o) after appropriate rescaling. [ | |

This result shows that the ordinal structure of friction—which configurations have more or less
friction—is uniquely determined. Only the cardinal scaling admits freedom, which can be fixed by
normalization.

B.4 Alternative Forms and Why They Fail

We briefly consider alternative functional forms and identify which desiderata they violate.
Additive form: F =oc+¢e—«

* Violates D6: F is finite as o0 — —1

* Violates D9: Not scale-invariant in o
Multiplicative form: F =c-¢- (1 —a)

* Violates D10: F(o,1,0) = 0 (no baseline friction)
* Violates D7/D6 boundary behavior

Exponential form: F = 6 -exp(e — «)

e Satisfies D1-D7, D9

* Violates D6 strictly: F is finite (not divergent) at o = —1

* May be acceptable in bounded-alignment contexts
Power-law form: F = o -€” /(1 + )4

* Generalizes canonical form (p =g =1)
* Different p, g change sensitivity to entropy vs. alignment

* Empirically distinguishable; canonical form is simplest
B.5 Information-Theoretic Interpretation
The uniqueness result admits an information-theoretic interpretation.

Proposition B.3 (Entropy-Rate Equivalence). The friction function equals the rate of expected informa-
tion loss under delegation:

H(Tp|Tp)
I(Tp;Ty)

where H(Tp|Tp) is conditional entropy (information agent lacks about principal) and 1(Tp; Ty) is mutual
information between targets.

F = o - Rate[Info loss| = o - (114)

Sketch. The numerator 1+ € corresponds to 1 + H(7p|.#) (baseline + information deficit).
The denominator 1 + o corresponds to 1 +1(7p; Ty) (baseline + alignment benefit).
The ratio is the effective “friction rate” per unit stake. Multiplying by o gives total friction. H W

This interpretation reinforces that friction is fundamentally about information flow and goal align-
ment in delegation relationships.
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B.6 Summary
The friction function F = o(1+¢€)/(1+ @) is:
1. Derived: From agency theory (Appendix A)
2. Unique: Given natural desiderata (Theorem B.1)

3. Interpretable: As information-theoretic loss rate (Proposition B.3)

The functional form is not arbitrary—it is the essentially unique form satisfying basic constraints on
how friction should behave. Alternative forms either violate these constraints or reduce to the canonical
form under monotonic transformation.

B.7 Quadratic Form Under Relaxed Divergence (D6’)

The MARL factorial experiment (Appendix C) reveals a U-shaped alignment—friction relationship, mo-
tivating relaxation of D6 (misalignment divergence) to a bounded non-monotonicity condition:

D6’. Bounded non-monotonicity: F achieves its maximum at @ = 0 and decreases symmetrically
toward both o« = —1 and o = 1. Formally: dF /da < 0 for ¢ > 0 and dF /do > 0 for ¢ < 0.

Theorem B.4 (Quadratic Form Uniqueness). The class of functions satisfying D1-D5, D6', D7-D10

includes: n
€
F<2>(a,a,g)=c-a-b“+a2 (115)
for constants ¢ >0, a >0, b > 0. Setting c = a = b =1 yields:
(2) 14+¢
F :0'714—052 (116)

Proof. By D8-D9, F = co - h(a, €) as before.

By D6/, h is maximized at o = 0 and symmetric in o (decreasing for o > 0, increasing for o < 0).
The simplest even function with a maximum at the origin and bounded range is # = f(&)/(b+ ?) for
some b > 0.

By D3, f'(g) > 0; the simplest increasing form is f(&) = a+ € for a > 0.

By D10, F(0,1,0) =co-a/(b+1) > 0, satisfied for all a,b,c > 0.

Setting a = b = ¢ = 1 yields F*) = 6(14¢)/(1+ a?) with F(0,1,0) = 6 /2—the same irreducible
baseline as the canonical form. ] |

The canonical form (Theorem B.1) and the quadratic form (Theorem B.4) agree at « =0 and @ = 1
but diverge in the adversarial regime: the canonical form has a singularity at @ = —1, while the quadratic
form reaches its maximum at @ = 0 and decreases symmetrically. Which form is empirically correct is
a testable question—the MARL results (Appendix C) favor the quadratic specification with AR? = 0.29
improvement over canonical.

B.8 Robustness and Sensitivity

Parameter sensitivity. The canonical form with (a,b,c) = (1,1,1) is a normalization choice. Varying
these parameters within the admissible range (a > 0,b > 1,¢ > 0) changes the cardinal scaling but
preserves all ordinal predictions: which configurations generate more/less friction, which arrangements
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are stable, and the qualitative dynamics. Empirical applications should report sensitivity to reasonable
parameter variations.

Relaxing separability. If D8 (separability) is relaxed, interaction terms o - &, O - € become admissi-
ble. Such terms would imply that high-stakes decisions have systematically different alignment-friction
relationships than low-stakes decisions. This is empirically testable: if interaction effects are signif-
icant in data, the separable form is inadequate. Current evidence (Section 6) does not suggest such
interactions, but future work should test this explicitly.

C Computational Validation: MARL Simulation

The friction framework makes quantitative predictions about coordination difficulty in multi-agent sys-
tems. This appendix specifies a multi-agent reinforcement learning (MARL) simulation designed to
validate these predictions. The key hypothesis is that measured coordination failure—quantified as re-
ward loss, convergence time, or policy divergence—correlates with the theoretical friction function.

C.1 Simulation Environment
C.1.1 State Space and Action Space

We implement a resource allocation environment where n agents must coordinate to allocate m shared

resources.
Definition C.1 (Resource Allocation MDP). The environment is specified by:

* State space . = R ;: Resource levels for m resources

* Action space «7; = {—1 ,0,+1}™ per agent: Request decrease, maintain, or request increase for
each resource

* Transition dynamics: Resources allocated proportionally to aggregated requests, subject to ca-
pacity constraints

* Episode length: 7 = 100 timesteps

C.1.2 Agent Reward Functions

Each agent i has a reward function R; : . — R parameterized to control alignment.

Definition C.2 (Parameterized Rewards). Agent i’s reward function is:
m
R,‘(S): ZW,‘j'M(Sj—Tij) (117)
j=1

where:

* wjj € [0,1]: Agent i’s weight on resource j (stake)
e 7;; € R: Agent i’s target level for resource j (preference)
* u(x) = —x*: Quadratic loss around target

This specification allows direct control of:
* Stakes o: Via ), |w;|| (aggregate weight magnitude)
* Alignment a: Via corr(7;, 7;) across agents (target correlation)

* Entropy &: Via observation noise (see below)
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C.1.3 Communication and Observation

To control entropy experimentally, we parameterize observation noise:

Definition C.3 (Noisy Observations). Agent i observes:
Si=s+n, nNi~AN0,e-1,) (118)

where € € [0, 1] controls noise magnitude.

Higher € means agents have less accurate information about the true state, corresponding to higher
entropy in the consent framework.

C.2 Experimental Design
C.2.1 Independent Variables

We manipulate three factors in a 5 x 5 x 5 factorial design:

Table 7: Experimental Factors

Factor Symbol Levels Manipulation

Alignment o {-0.8,—-0.4,0,0.4,0.8}  Target correlation
Stakes c {0.2,0.4,0.6,0.8,1.0} Weight magnitude
Entropy € {0,0.25,0.5,0.75,1.0}  Observation noise

Total: 125 experimental conditions, with k = 30 replications each.
C.2.2 Dependent Variables (Friction Proxies)

We measure coordination failure through four operationalizations:
1. Reward Gap AR: Difference between Nash equilibrium payoff and realized payoff

1

T
AR=R — L YR (119)
t=1

N

2. Convergence Time 7,.: Episodes until policy stabilization (change < 0)

T, =min{e: ||T, — T,_1]| < &} (120)
3. Policy Variance Var(7): Variance in joint policy across replications

1 k
Var(m) = - Y ||m— 7| (121)
r=1

4. Pareto Inefficiency 1: Distance from Pareto frontier

n= min HRrealized _RParetoH (122)

RFareto

C.2.3 Learning Algorithm
Agents use Independent Q-Learning (IQL) with the following specifications:
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* Network: 2-layer MLP, 64 hidden units, ReLU activation
* Learning rate: 11 = 0.001 with Adam optimizer

* Discount: y=0.99

» Exploration: e-greedy, € = 0.1 — 0.01 annealing

* Training: 10,000 episodes per condition

IQL is deliberately chosen despite its non-stationarity issues—coordination failure is what we mea-
sure. More sophisticated algorithms (MADDPG, QMIX) would reduce friction, confounding the ma-
nipulation.

C.3 Hypotheses
The friction framework generates the following predictions:

Hypothesis 1 (H1: Alignment-Friction Inverse Relationship). Measured friction proxies decrease with

alignment:

JAR o071,

— <0, =—<0 123

o do (123)
Hypothesis 2 (H2: Stakes-Friction Positive Relationship). Measured friction proxies increase with stakes:

JAR o071,

—>0, =—>0 124

Jdo Jdo (124)
Hypothesis 3 (H3: Entropy-Friction Positive Relationship). Measured friction proxies increase with
entropy:

JAR o071,

— >0, —>0 125

Jde Jde (125)
Hypothesis 4 (H4: Friction Function Fit). Measured friction is well-predicted by the theoretical form:

1+¢
AR%ﬁo—FBl-G-H%—i-error (126)

with R > 0.7.

C.4 Analysis Plan
C.4.1 Regression Specification

For each friction proxy Y € {AR, 1., Var(7),n}:
Yijt = Bo+ BiFijk + 1% + 720 + v3&, + i (127)
where Fjx = ;- (1+&)/(1+ o) is theoretical friction.
* B1 > 0 supports H4 (friction function fit)
* Residual effects 1, 7, v3 should be small if the friction function captures the structure

C.4.2 Model Comparison

We compare friction-based prediction against alternatives:

1. M1: Friction model: Y = f(c(1+¢)/(1+a))

2. M2: Additive model: ¥ = g(c + £ — o)
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3. M3: Multiplicative model: Y = h(c-€- (1 —))
4. M4: Independent effects: Y = j(o) + k(o) +1(¢€)

Model selection via AIC/BIC. The friction model (M1) should dominate if the theory is correct.

C.5 Expected Results

Based on the theoretical framework, we expect:

1. Alignment dominates: The 1/(1+ «) term contributes most to friction variance, especially near
a — —1 where divergence occurs.

2. Entropy amplifies: The (14 €) numerator moderates friction, but its effect is multiplicative with
stakes.

3. Stakes scale: Friction should scale linearly with o, as predicted by the homogeneous-degree-1
property.

4. Interaction effects: The friction function predicts specific interaction effects (e.g., high stakes +
low alignment is worse than the sum of individual effects).

C.6 Robustness Checks
C.6.1 Alternative Learning Algorithms

Repeat analysis with:

* MADDPG (centralized critic)
* QMIX (value decomposition)
* MAPPO (policy gradient)

The friction relationship should persist across algorithms, though absolute levels may differ.
C.6.2 Environment Variations

Test generalization to:

» Continuous action spaces

* Competitive (zero-sum) substructures

» Larger agent populations (n = 10,20, 50)
* Heterogeneous agent capabilities

C.6.3 Functional Form Robustness

An important robustness consideration concerns the friction function’s specific form. As discussed in
Section 6.7, the baseline specification F = o(1+¢€)/(1 + ) is one of several forms satisfying the
required boundary conditions. The MARL validation should test whether results hold across alternative
specifications.

We note that the qualitative MARL predictions—H1 through H3—are invariant to functional form
choice. All specifications satisfying the monotonicity conditions (dF /dc >0, dF /da. <0, dF /de > 0)
generate the same directional hypotheses. The quantitative prediction H4, which tests the specific func-
tional form, should be evaluated against the alternative models M1-M4 specified in the model compari-

son analysis (Section C.8).
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Preliminary analysis suggests that the ordering of conditions by friction magnitude is preserved
across multiplicative, additive, and independent specifications: high-stakes/low-alignment conditions
produce the highest friction regardless of functional form, while low-stakes/high-alignment conditions
produce the lowest. Quantitative differences between specifications are largest in the extreme misalign-
ment regime (o — —1), where the baseline form’s divergence contrasts with the bounded behavior of
exponential alternatives. The full model comparison, reporting AIC/BIC across specifications, will de-
termine whether the specific multiplicative form provides superior fit or whether simpler additive models
suffice.

C.6.4 Friction Dynamics

Beyond steady-state analysis, examine:

* Friction evolution during learning (F; over episodes)
* Convergence rates as function of initial conditions
* Hysteresis effects when parameters change mid-training

C.7 Implementation

The simulation is implemented in PyTorch with the following structure:

friction_marl/
+-- envs/
| +-- resource_allocation.py # Environment definition

+-- agents/

| +-- iql.py # Independent (-Learning

| +-- baselines.py # MADDPG, QMIX, MAPPO

+-- experiments/

| +-- factorial_design.py # 125-condition sweep

I +-- analysis.py # Statistical analysis

+-- utils/

| +-- metrics.py # Friction proxy computation
| +-- visualization.py # Result plotting

+-- run_experiments.py # Main entry point

Implementation available at https://github.com/studiofarzulla/friction-marl.

C.8 Full Factorial Results

This section reports results from the complete 5 x 5 x 5 factorial experiment: 125 conditions, 30 repli-
cations each, 1,000 training episodes per replication. Total computational budget: 3,750 independent
training runs executed on an AMD Radeon RX 7900 XTX (25.8 GB VRAM) using a GPU-vectorized
PyTorch implementation with ROCm 6.3.

C.8.1 Experimental Summary

Table 8 summarises the experimental parameters. The factorial design manipulates alignment (o €
{-0.8,—-0.4,0,0.4,0.8}), stakes (o € {0.2,0.4,0.6,0.8,1.0}), and entropy (¢ € {0,0.25,0.5,0.75,1.0}).
Each of the 125 conditions was replicated 30 times with independent random seeds using Independent
Q-Learning (IQL) agents. Each replication trained for 1,000 episodes of 100 timesteps, with the final
100 episodes used for evaluation metrics.
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Across all 3,750 replications, mean reward ranged from —4.511 (worst condition: & =0.0, 6 = 1.0,
€ =0.75) to —0.425 (best condition: @ = 0.4, o = 0.2, € = 0.00), a ratio of approximately 10.6X in
reward gap magnitude. The grand mean was —1.724 with standard deviation 1.252.

C.8.2 Hypothesis Tests

H1: Alignment-Friction Inverse Relationship. Table 9 reports the factorial ANOVA results. Align-
ment exhibits a significant main effect (F = 186.76, n2 = 0.0958, p < 0.001). However, the effect
is not monotonically inverse as H1 predicts. Instead, the alignment—friction relationship is U-shaped:
neutral alignment (¢t = 0) produces the worst outcomes (mean reward —2.486), while both cooperative
(a =0.4: —1.456) and adversarial (o« = —0.4: —1.453) alignment yield comparable performance. The
linear regression coefficient 305 = —0.017 is near zero, reflecting this symmetry.

This U-shape has a mechanistic interpretation under IQL. When agents have correlated targets (@ >
0), their independent learning trajectories naturally converge toward compatible policies. When targets
are anti-correlated (o < 0), agents develop complementary strategies—each agent learns to avoid what
others pursue. At neutral alignment (o = 0), targets are uncorrelated, providing no structural signal for
IQL agents to exploit. The non-stationarity of independent learning is maximally damaging when the
reward landscape offers no exploitable alignment structure.

HI1 is therefore partially supported: alignment matters, and the best outcomes occur at cooperative
alignment (o« = 0.4). But the relationship is non-monotonic, with adversarial alignment outperforming
neutrality—a finding that refines the theoretical prediction. The friction framework predicts monotonic
increase as o — —1 (via the 1/(1+ &) divergence), but the simulation reveals that alignment structure—
whether positive or negative—is more valuable than alignment direction for IQL coordination.

H2: Stakes—Friction Positive Relationship. Stakes exhibit the strongest main effect by a substan-
tial margin (F =772.55, n2 =0.3965, p < 0.001), confirming H2. The regression coefficient ﬁg =2.786
indicates that stakes is the dominant predictor of coordination failure, accounting for approximately
40% of total variance. Mean reward decreases monotonically from —0.596 at ¢ = 0.2 to —2.821 at
o = 1.0—a nearly 5x increase in coordination loss. The stakes—friction relationship is approximately
linear, consistent with the theoretical prediction of homogeneous-degree-1 scaling in ©.

H3: Entropy—Friction Positive Relationship. Entropy shows a significant but modest main effect
(F = 15.30, n? = 0.0079, p < 0.001). The regression coefficient Bg = 0.286 confirms that observation
noise increases friction, supporting H3. Mean reward decreases from —1.557 at € =0 to —1.854 at
€ = 1.0, a 19% increase in coordination loss. The effect is roughly an order of magnitude weaker
than stakes, suggesting that in this resource allocation environment, what agents want matters far more
than how accurately they perceive the state. The o x € interaction is non-significant (F = 1.10, p =
0.350), indicating that entropy amplifies friction approximately additively with alignment rather than
multiplicatively as the theoretical (14 ¢€)/(1+ ) form would predict.

H4: Friction Function Fit. Table 10 reports model comparison results. The theoretical friction
specification M1 (F = o(1+¢)/(1 + &)) achieves R> = 0.108 on condition-level reward gaps, well
below the pre-registered threshold of R? > 0.7. The poor fit is driven by two factors: (1) the U-shaped
alpha effect violates the monotonic 1/(1+ o) assumption, and (2) the dominance of stakes over the other
parameters means that collapsing all three into a single composite index loses substantial information.

The independent-effects model M4 (AR ~ o + o + €) achieves R? = 0.753 with the lowest AIC
(165.7), outperforming M1 by AAIC = 156.6—decisive evidence by information-theoretic criteria. Note
that M4’s near-zero alpha coefficient ([§a = —0.017) is not evidence that alignment is irrelevant; rather,

the linear term fails to capture the U-shaped relationship. A quadratic specification Baz - o> would
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substantially improve even M4.

Critically, all four models agree on the directional predictions for stakes and entropy (H2, H3). The
disagreement concerns the alignment functional form and the multiplicative interaction structure. The
friction function captures the right variables but not the right shape for alignment.

C.8.3 Interaction Effects

Table 11 reports the full interaction structure. The ¢ x ¢ interaction is significant (F = 10.24, n? =
0.021, p < 0.001), confirming superadditivity: the worst-performing conditions cluster at neutral align-
ment and high stakes (¢ = 0, o > 0.8). Figure 1 visualises this interaction as a heatmap of reward
gap across the o x o plane. The U-shaped alpha effect is amplified at high stakes: the performance
difference between @ = 0 and o¢ = 0.4 grows with o.

The o x ¢ interaction is marginally significant (F = 1.85, n? = 0.004, p = 0.021), suggesting that
entropy has a slightly larger effect at high stakes. The three-way interaction o X ¢ X € is non-significant
(F = 0.94, p = 0.623), providing limited support for the fully multiplicative structure of the friction

function.
C.8.4 Convergence Analysis: Dynamic Equilibria

A striking divergence emerges between policy-level and outcome-level convergence. Using a policy-
stability criterion (change < & over consecutive sampling windows), only 0.85% of replications achieve
policy convergence within the training budget. By contrast, using a reward-stability criterion (10%
tolerance of final reward level), 99.3% of replications achieve reward convergence.

This gap is the simulation’s strongest confirmation of the friction framework’s core theoretical claim:
stable coordination outcomes arise through ongoing mutual adaptation, not through convergence to
fixed-point agreement. Agents continuously adjust their policies in response to others’ behavior—the
joint policy never stabilises—yet the aggregate reward outcome reaches a stable attractor. The system
occupies a dynamic equilibrium: individual strategies cycle while collective outcomes persist.

Low-stakes conditions (o < 0.4) achieve reward convergence within 100-200 episodes, while high-
stakes conditions (¢ > 0.8) require 300-500 episodes. This pattern holds across alignment levels, con-
firming that convergence speed scales with coordination difficulty rather than alignment structure. Late-
training reward stability (standard deviation over the last 250 episodes) is remarkably uniform across
conditions: approximately 0.04-0.06 for all alignment levels, with neutral alignment showing marginally
higher instability (0.056 vs 0.043-0.050).

C.8.5 Agent Inequality

Beyond aggregate performance, we examine how friction affects the distribution of rewards across
agents. Agent reward variance exhibits a striking pattern across alignment levels:

Alignment Agent Reward Variance Significant Exploitation

a=—0.8 0.110 0% of conditions
a=-04 0.652 12%
a=0.0 2.841 12%
o=+04 0.636 8%
o =-+0.8 0.101 0%

The neutral alignment condition (& = 0) produces agent reward variance 28 times higher than the
alignment extremes (@ = £0.8). This is the most striking equity finding: friction—whether cooperative
or adversarial—acts as a structural equaliser. At |o| = 0.8, zero conditions exhibit statistically significant
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exploitation (persistent best-vs-worst agent inequality by z-test, p < 0.05), while moderate friction and
neutral conditions show exploitation in 8—12% of conditions.

The mechanism differs by sign. Under cooperative friction (@ > 0), correlated preferences cre-
ate naturally overlapping targets, so all agents benefit from similar resource states. Under adversarial
friction (o < 0), anti-correlated preferences create predictable opposition that agents can learn to nav-
igate, and competitive pressure punishes exploitation through counteradaptation. At neutral alignment
(a =0), uncorrelated preferences create arbitrary asymmetries—some agents happen to want states near
the resource mean, granting them structural advantages that persist without friction to counteract.

The Gini coefficient of agent rewards (mean: 0.397, range: 0.252—0.747) confirms this pattern, with
inequality peaking at neutral alignment and high stakes. Stakes amplifies the inequality effect monoton-
ically: agent variance increases from 0.108 at 0 = 0.2 to 1.884 at o = 1.0, combining multiplicatively
with the alignment effect. The worst inequality occurs at (& = 0,6 = 1.0): high stakes with no align-
ment structure.

C.8.6 Effect Sizes

The dynamic range of the experimental manipulation is substantial. Comparing the best condition (@ =
0.4, 0 = 0.2, € = 0: mean reward —0.425 £ 0.144) against the worst condition (& = 0.0, o = 1.0,
€ =0.75: mean reward —4.511 4 1.646), Cohen’s d = 3.49 for mean reward, representing a very large
effect. The ratio of reward gaps (10.6x) exceeds the theoretical prediction for this parameter range,
driven by the unexpectedly severe performance at neutral alignment.

For the theoretically predicted extremes—Ilow friction (o = 0.8, o = 0.2, € = 0) vs high friction
(x=-0.8,0 =1.0, e =1.0)—Cohen’s d = 2.28, still a large effect. The low-friction condition achieves
mean reward —0.493 4+-0.245 compared to —3.068 = 1.580 for high friction.

C.8.7 Cross-Implementation Validation

To verify that results are not an artifact of the GPU-vectorized implementation, we ran a parallel CPU-
based factorial experiment using Python multiprocessing (22 workers) with identical hyperparameters
and training budget (1,000 episodes). Table 12 reports the comparison across 65 overlapping condi-
tions. Despite using independent random seed streams and different floating-point accumulation pat-
terns (batched GPU tensor operations vs sequential CPU processing), the Spearman rank correlation is
p = 0.937 and the Pearson correlation is r = 0.927. The GPU implementation produces systematically
lower rewards (64/65 conditions, mean A = —0.459), attributable to numerical differences between GPU
and CPU execution rather than any algorithmic divergence. The strong rank-order agreement confirms
that both implementations identify the same condition-level performance structure: the U-shaped alpha
effect and stakes dominance are reproduced across independent codepaths.

C.8.8 Limitations

Several limitations qualify these findings. First, IQL is a deliberately naive algorithm choice—coordination
failure is what we measure, not what we optimise away. More sophisticated algorithms (MADDPG,
QMIX, MAPPO) would likely reduce absolute friction levels while preserving the relative ordering
across conditions. Second, the parameter grid is coarse: five levels per factor may miss nonlinearities
between grid points, particularly near the divergence at & — —1 and in the transition region around
a=0.

Third, the U-shaped alignment effect is potentially specific to IQL and the resource allocation envi-
ronment. With centralised training (MADDPG) or value decomposition (QMIX), adversarial alignment
might produce worse outcomes than neutral alignment, restoring the monotonic prediction. The finding
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that alignment structure matters more than alignment direction under IQL is theoretically interesting but
may not generalise.

Fourth, convergence time is censored at 1,200 episodes, compressing the upper tail and reducing
statistical power for this metric. Nearly all conditions hit the censoring bound, rendering convergence
time uninformative for distinguishing between moderate- and high-friction conditions. Future work
should extend training duration or adopt uncensored convergence criteria.

Finally, the poor performance of the theoretical friction model M1 (R? = 0.108) suggests that the
specific multiplicative functional form o(1+ €)/(1 + ) requires revision. The monotonic 1/(1+ o)
term fails to capture the U-shaped alignment effect, and the multiplicative interaction structure is not sup-
ported by the non-significant three-way interaction. The quadratic refinement F(?) = 6(14-¢)/(1+ a?)
introduced in Remark 2.5 directly addresses this discrepancy: the 1/(1+ «?) denominator is maximized
at o = 0 and symmetric in o, matching the empirical U-shape while preserving agreement with the
canonical form at a € {0,1}. Appendix B.7 derives this form from relaxed axiomatic constraints (D6':
bounded non-monotonicity replacing divergence). However, the qualitative predictions—that coordina-
tion failure is structured by alignment, stakes, and entropy—are robustly confirmed.

C.8.9 Summary

The MARL factorial experiment confirms that friction is a structured, predictable phenomenon in multi-
agent coordination. H2 (stakes—friction positive) and H3 (entropy—friction positive) are strongly sup-
ported: stakes dominates the reward gap (2 = 0.397), with entropy contributing a smaller but significant
effect (n? = 0.008). HI (alignment—friction inverse) is partially supported: alignment has a significant
effect (n? = 0.096), but the relationship is U-shaped rather than monotonic, with neutral alignment pro-
ducing the worst outcomes. H4 (friction function fit) is not met at the pre-registered threshold for the
single-predictor model (R* = 0.108), though the independent-effects model achieves R?> = 0.753.

Three key findings emerge. First, friction—operationalised as coordination failure in multi-agent
reinforcement learning—is governed primarily by stakes magnitude, with alignment contributing a non-
trivial but non-monotonic effect. The theoretical friction function F = 6(1+¢€)/(1 + a) captures the
right variables but not the right shape: the U-shaped alignment effect suggests that alignment struc-
ture (whether cooperative or adversarial) reduces friction under independent learning, while alignment
absence (neutrality) maximises it.

Second, friction acts as a structural equaliser: agent reward variance drops 28-fold from neutral
alignment to the alignment extremes, with zero statistically significant exploitation at || = 0.8. This is
not a tradeoff between efficiency and equity—structured friction improves both aggregate performance
and distributional fairness simultaneously.

Third, 99.3% of conditions achieve reward convergence despite only 0.85% achieving policy convergence—
the strongest empirical confirmation that stable coordination arises through dynamic equilibria rather
than fixed-point consensus. This finding directly validates the friction framework’s prediction that insti-
tutional stability requires structured disagreement, not agreement.

These results motivate a refinement of the friction function to incorporate alignment magnitude
|ot| or a? terms alongside alignment direction, capturing the empirical finding that alignment structure
matters more than alignment sign.

C.9 Connection to Main Paper

The MARL simulation serves three purposes:

1. Validation: Tests whether friction predictions hold in computational multi-agent systems
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2. Quantification: Provides magnitude estimates for friction effects

3. AI Relevance: Demonstrates framework applicability to the primary domain claimed (multi-agent
coordination)

The results establish that the friction framework captures real coordination dynamics, though with
important refinements. The qualitative predictions—that coordination failure scales with stakes and
is modulated by alignment structure—are confirmed. The U-shaped alignment effect and the 28-fold
equalisation finding go beyond the original theoretical predictions, suggesting that friction dynamics are
richer than the baseline F = o(1 +¢€)/(1 + a) specification captures. The dynamic equilibrium finding
(reward convergence without policy convergence) provides direct empirical support for the framework’s
central claim that stable coordination need not require consensus.

Table 8: MARL Factorial Experiment: Design Parameters

Parameter Symbol Levels Interpretation

Alignment a {-0.8,-0.4,0,0.4,0.8} Target correlation between agents
Stakes o {0.2,0.4,0.6,0.8,1.0} Weight magnitude on resources
Entropy € {0,0.25,0.5,0.75,1.0}  Observation noise level

Design summary

Conditions 5 x5 x5 =125 (full factorial)
Replications 30 per condition (3,750 total)
Episodes 1,000 per replication

Agents 4 per environment (IQL)

Total training runs 3,750

Table 9: Three-Way Factorial ANOVA: Main Effects on Mean Reward

Source F-statistic n? p-value Direction

Alignment (o) 186.76*%** 0.0958 < 0.001 U-shaped: a =0 worst
Stakes (o) 772.55%*%% 0.3965 < 0.001 Higher o = higher friction
Entropy (&) 15.30%** 0.0079 < 0.001 Higher € = higher friction
Interaction effects

o X O 10.24*** (0.0210 < 0.001

o XE 1.10 0.0023 0.350

OXE 1.85*% 0.0038 0.021

AXOXE 0.94 0.0077 0.623

Residual (df = 3625)

Significance: *** p < 0.001, ** p < 0.01, * p < 0.05. n? = proportion of total variance explained.

D Formal Verification in Lean 4

The core properties of the friction function F (o, a,€) = o(1+¢€)/(1+ ) from Sections 2 and 4 have
been machine-checked in Lean 4 (v4.27.0) with the Mathlib library (v4.27.0). The formalization covers
the zero-friction characterization, the inevitable friction theorem, the irreducible minimum F > /2, all
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Table 10: Model Comparison: Alternative Friction Specifications (DV: Reward Gap)

Model R? AIC BIC RMSE
MI: Friction o(1+¢)/(1+a)  0.1084 3223 3279 0.8643
M2: Additive 6 + € — o 0.1586 315.0 320.7 0.8396
M3: Multiplicative 6-&- (1 —a) 0.1860 3109 316.6 0.8258
M4: Independent ot +0 + € 0.7533 165.7 177.0 0.4547

M1-M3 are single-predictor models (2 parameters each). M4 uses three independent predictors (4 parameters).
Bold indicates lowest AIC. AAIC (M4 vs M1) = 156.6, constituting decisive evidence by information-theoretic
criteria.

Table 11: Pairwise and Three-Way Interaction Effects

Interaction F-statistic n? p-value df
axo 10.24*** 0.0210 < 0.001 16
axe 1.10 0.0023 0.350 16
O XE 1.85% 0.0038 0.021 16
AXOXE 0.94 0.0077 0.623 64
Gini coefficient (agent inequality)

axo 2.58*%**% 0.0059 <0.001 16
axe 2.84%**% (0.0065 < 0.001 16
O XE 0.97 0.0022 0.491 16
AXOXE 1.04 0.0096 0.390 64

Upper panel: dependent variable is mean reward. Lower panel: dependent variable is Gini coefficient across
agent rewards. Significance: *** p < 0.001, ** p < 0.01, * p < 0.05.

three monotonicity results, linearity in stakes, and the divergence result as alignment approaches —1.

All 12 theorems compile with zero errors.

Selected proof: irreducible friction minimum (Corollary 4.10).

| theorem friction_ge_half_stake {sigma alpha epsilon : R}

2 (hsigma : 0 <= sigma) (halpha : -1 < alpha)
(halpha’ : alpha <= 1) (hepsilon : 0 <= epsilon)
4 sigma / 2 <= friction sigma alpha epsilon := by
unfold friction
6 have hl1 : (0 : R) < 1 + alpha := by linarith
7 suffices h : 0 <= sigma * (1 + epsilon) / (1 + alpha)
8 - sigma / 2 by linarith

9 rw [div_sub_div _ _ (ne_of_gt h1l) (by norm_num : (2 : R) /= 0)]
10 apply div_nonneg
11 . nlinarith

12 . positivity

Selected proof: misalignment divergence (Theorem 4.9).

| theorem friction_unbounded {sigma epsilon B : R}
2 (hsigma : O < sigma) (hepsilon : 0 <= epsilon) (hB : 0 < B)
exists alpha : R, -1 < alpha /\ B < friction sigma alpha epsilon

= by
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Table 12: Cross-Implementation Validation: GPU vs CPU Factorial Results

Metric GPU (vectorized) CPU (parallel) Overlap
Conditions 125 65 65
Replications/condition 30 30 —
Spearman p (rank order) — 0.9370
Pearson r (mean reward) — 0.9273
MAE (mean reward) — 0.4610

GPU implementation uses PyTorch-vectorized environments on AMD 7900 XTX. CPU implementation uses
multiprocessing (22 workers). Both use 1,000 episodes. Systematic offset (A = —0.459, GPU lower in 64/65
conditions) attributable to numerical differences between GPU and CPU execution, not algorithmic divergence.

Pairwise Interactions — Mean Reward

a (Friction) x o (Noise) a (Friction) x & (Exploration) o (Noise) x £ (Exploration)

= QEECEMNNETEN 162 2100 258 -05 = JEE BECN 1710 | 470

ERUMN 400 a0 2313 3

Mean Reward

1635 249

-0.902 3407
; B

a (Friction)
|

Figure 1: Pairwise interaction heatmaps for mean reward. Left: alignment (&) vs stakes (o),
marginalised over entropy. The U-shaped alpha effect is visible: neutral alignment (&« = 0) produces
the highest friction at every stakes level, while both cooperative (o > 0) and adversarial (o < 0) align-
ment reduce friction. Right panels show remaining pairwise interactions.

4/ refine <-1 + sigma * (1 + epsilon) / (2 * B), 7_, ?_>

5 . have : 0 < sigma * (1 + epsilon) / (2 * B) := by positivity
6 linarith

7 . unfold friction

8 have hl : 0 < sigma * (1 + epsilon) := by positivity
9 have h4 : sigma * (1 + epsilon) /= 0 := ne_of_gt hl

10 have h5 : (2 * B) /= 0 := ne_of_gt (by positivity)

B have h6 : sigma * (1 + epsilon) / (2 * B) /= 0 :=

12 div_ne_zero h4 hb

13 suffices heq : sigma * (1 + epsilon)

14 / (sigma * (1 + epsilon) / (2 * B)) = 2 * B by

15 rw [show 1 + (-1 + sigma * (1 + epsilon) / (2 * B))
16 = sigma * (1 + epsilon) / (2 * B) from by ring]

17 rw [heq]; linarith

18 rw [div_eq_iff h6, mul_comm (2 * B)]

19 exact (div_mul_cancel_O _ hb5).symm

Source code and build instructions: https://github.com/studiofarzulla/lean-formalization
s. Verification reproduces via lake build with Lean 4 v4.27.0 and Mathlib v4.27.0.
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Main Effects on Reward and Convergence Time
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Figure 2: Main effects of alignment (), stakes (o), and entropy (€) on mean reward, with 95% confi-
dence intervals from 30 replications per condition. Stakes dominates (> = 0.397), followed by align-
ment (12 = 0.096), with entropy contributing a modest effect (n?> = 0.008). The alignment effect is
clearly U-shaped, not monotonic.

Agent Reward Inequality by Friction Level Agent Reward Gini by Friction Level
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Figure 3: Agent reward inequality as a function of alignment (¢r). Left: agent reward variance peaks

at 2.841 for neutral alignment, dropping to ~0.1 at the extremes—a 28-fold reduction. Right: Gini
coefficient shows the same U-shaped pattern. Friction acts as a structural equaliser regardless of its sign.

Table 13: Machine-checked theorems and their correspondence to paper results.

Lean theorem Paper result Description
friction_zero_of_stake_zero Prop. 2.1 c=0=F=0
stake_zero_of_friction_zero Prop. 2.1 F=0=0=0
friction_eq_zero_iff Prop. 2.1 F=00=0
friction_pos Thm. 4.9 c>0=F>0
friction_at_perfect_alignment  Cor. 4.10 F(0,1,0)=0/2
friction_ge_half_stake Cor. 4.10 F > o2 for all valid params
friction_strict_anti_alignment Prop.2.2 JdF/do <0
friction_strict_mono_stake Prop. 2.3 dF/doc >0
friction_strict_mono_entropy Prop. 2.4 JdF/de >0
friction_stake_linear §2.4 F(co,a,e)=cF(0,0,¢)
friction_nonneg §2.4 F > 0 for valid parameters
friction_unbounded Thm. 4.9 F—oasa— —1T
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