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Abstract

We investigate whether cryptocurrency markets differentiate between infrastructure failures and reg-
ulatory enforcement at the return level, complementing a companion conditional variance analy-
sis that finds 5.7 times larger volatility impacts from infrastructure events (p = 0.0008). Using
event-level block bootstrap inference on 31 events across Bitcoin, Ethereum, Solana, and Cardano
(2019-2025), we find no statistically significant difference in cumulative abnormal returns between
infrastructure failures (—7.6%) and regulatory enforcement (—11.1%): the difference of +3.6 pp
has p = 0.81 with 95% CI [—25.3%,+30.9%].

This null acquires substantive meaning alongside the companion’s highly significant variance
result: the same events that produce indistinguishable return responses generate dramatically dif-
ferent volatility signatures. Markets differentiate shock types through the risk channel—the second
moment—rather than expected returns. The block bootstrap methodology, which resamples entire
events to preserve cross-sectional correlation, reveals that prior parametric approaches systemati-
cally understate uncertainty by inflating degrees of freedom. Results are robust across eight speci-
fications including permutation tests, leave-one-out analysis, and the Ibragimov—Miiller few-cluster
test.
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1 Introduction

Do cryptocurrency markets respond differently to infrastructure failures versus regulatory enforcement?
This paper investigates differential market responses using a 4-category event classification that ad-
dresses prior conflation of positive and negative events within each type. This study extends prior work
on asymmetric volatility response to cryptocurrency shocks (Farzulla, 2025a) by focusing on return-
level comparisons rather than conditional variance dynamics. That companion study finds infrastructure
events generate 5.7 times larger conditional variance increases than regulatory events (p = 0.0008, Co-
hen’s d = 2.753) using GJR-GARCH-X models. A natural follow-up question—addressed here—is
whether this asymmetry extends to the first moment: do infrastructure failures also produce larger re-
turns than regulatory enforcement, or does the differential response operate exclusively through the risk
channel?

Prior work analyzing infrastructure vs regulatory events often pooled heterogeneous events: halv-
ings (positive infrastructure) with exchange collapses (negative infrastructure), ETF approvals (positive
regulatory) with SEC lawsuits (negative regulatory) (Auer and Claessens, 2018; Shanaev et al., 2020).
This conflation can obscure meaningful comparisons.

We adopt a cleaner design:

 Infra_Negative: Exchange failures, hacks, collapses (10 events; 8 analyzed*)

« Infra_Positive: Protocol upgrades, halvings (6 events)
* Reg_Negative: Securities and Exchange Commission (SEC) lawsuits, country bans (7 events)

* Reg_Positive: Exchange-traded fund (ETF) approvals, regulatory clarity (8 events)
*Two early events (QuadrigaCX 2019, Binance hack 2019) lack sufficient pre-event estimation data.
Our primary comparison tests whether markets respond differently to negative infrastructure events
versus negative regulatory events—both represent shocks of similar valence.
Hypothesis specified ex ante (enforcement capacity): Infrastructure failures should produce larger
negative CARs than regulatory enforcement because regulators lack direct power over decentralized
systems.

1.1 Preview of Results

1. Infrastructure failures (N=8 analyzed events): Mean CAR = —7.6%, 95% CI [—25.8%,+11.3%]
2. Regulatory enforcement (N=7 events): Mean CAR = —11.1%, 95% CI [-31.0%,+10.7%)|

3. Category Difference (A): +3.6 pp, CI [—25.3%,+30.9%], p = 0.81

4. Window sensitivity: Consistent negative sign across [0,+1] to [—5,+30]

5. Leave-one-out: Robust to FTX/Terra exclusion (no sign flip)

6. Market model: BTC and equal-weighted (EW) proxy confirm results

Bottom line: Event-level block bootstrap (which properly accounts for cross-sectional correlation)
produces wide confidence intervals crossing zero. We find no significant difference between infras-
tructure failures and regulatory enforcement—the effect size is small and statistically indistinguishable
from zero with only 8 vs 7 analyzed events.

1.2 Contributions

This paper makes three contributions:



1. Methodological: We develop a 4-category event classification (infrastructure/regulatory X posi-
tive/negative) that enables cleaner hypothesis tests than prior conflated approaches.

2. Robustness: We provide market model robustness (BTC as proxy) and pre-event anticipation anal-
ysis to address placebo anomalies and information leakage concerns.

3. Empirical: We find no significant difference between infrastructure failures and regulatory enforce-
ment in market response—the enforcement capacity hypothesis remains neither confirmed nor re-
jected, requiring larger samples or alternative identification strategies.

2 Literature Review

2.1 Event Studies in Cryptocurrency Markets

Event study methodology has been applied to cryptocurrency markets by Auer and Claessens (2018) and
Lucey et al. (2022), with comprehensive surveys provided by Kothari and Warner (2007) and systematic
reviews of social media sentiment influence by Sundarasen and Saleem (2025). The foundational event
study framework established by MacKinlay (1997) has been adapted to cryptocurrency settings, though
these studies typically find significant abnormal returns around major announcements but rarely distin-
guish between event types systematically. Recent work has examined regulatory impacts across multiple
jurisdictions (Chokor and Alfieri, 2021; Koenraadt and Leung, 2024; Cumming et al., 2025), generally
finding negative market reactions to restrictive regulation.

Auer and Claessens (2020) provide a comprehensive analysis of regulatory events affecting Bitcoin
prices, finding heterogeneous effects depending on regulatory stance (favorable vs unfavorable). More
recently, Saggu et al. (2025) examine SEC classification decisions specifically, finding significant price
impacts from securities designations—their named-token approach (analyzing XRP directly for Rip-
ple events) offers cleaner identification than our spillover-based design. Our contribution extends this
literature by comparing regulatory events to infrastructure events within a unified framework, and by
employing a 4-category classification that separates positive from negative valence within each event
type.

Recent methodological advances highlight identification challenges. Goldsmith-Pinkham and Lyu
(2025) show factor model misspecification can bias estimates when treatment and control assets load
differently on omitted factors. Casini and McCloskey (2025) develop “shock dominance” tests for high-
frequency settings. For few-cluster inference, MacKinnon et al. (2023) recommend conservative ap-
proaches including the Ibragimov and Miiller (2010) t-test—a method we employ.

2.2 Market Microstructure

Cryptocurrency microstructure differs from traditional markets (Makarov and Schoar, 2020). Aste
(2019) provides foundational analysis of dependency and causality structures across nearly two thousand
cryptocurrencies, demonstrating that prices are significantly correlated with social sentiment and that
major assets like Bitcoin occupy central positions in price correlation networks while playing marginal
roles in sentiment networks. This asymmetry between price and sentiment network centrality motivates
our focus on how different shock types propagate through market structure. Transfer entropy analy-
sis further reveals that BTC serves as the dominant information driver in crypto-equity interactions,
with announcement-driven feedback from stocks to BTC occurring only during major financial events
(Aufiero et al., 2025a). The development of systematic benchmarks such as CRIX (Trimborn and Hér-
dle, 2018) has enabled rigorous market-wide analysis, while indices capturing regulatory-specific risk
such as CRRIX (Ni et al., 2025) demonstrate that policy news systematically impacts crypto market



dynamics. The absence of designated market makers, 24/7 trading, and cross-exchange fragmentation
complicate event study inference. Exchange hacks and regulatory news have been shown to significantly
impact Bitcoin volatility (Lydcsa et al., 2020), with spillover effects across international markets (Borri
and Shakhnov, 2020). Sentiment effects extend beyond spot returns: Kim (2025) finds that social media
peer opinions significantly predict cryptocurrency option prices, suggesting that the information channel
operates across multiple market layers. Meanwhile, Ates and Basarslan (2025) compare traditional and
contextual NLP representations for cryptocurrency sentiment, finding inconsistent performance across
methods—results consistent with our premise that structural assumptions may impose false patterns
rather than capturing genuine signal. We focus on returns, leaving liquidity extensions to future work.

2.3 Infrastructure vs Regulatory Distinction

The distinction between infrastructure and regulatory events is novel to this literature. We define:

Infrastructure events: Direct mechanical impact on transaction execution, custody, protocol func-
tionality, or exchange operations. Examples: exchange failures (Mt. Gox, FTX) with documented sys-
temic contagion effects (Jalan and Matkovskyy, 2023; Conlon et al., 2024), protocol failures such as
the Terra/UST algorithmic stablecoin collapse (Liu et al., 2023; Badev and Watsky, 2023), and network
incidents. Developer-level evidence corroborates this distinction: Vaccargiu et al. (2025) find that tech-
nical events in Ethereum repositories generate anticipatory development activity before events followed
by reduced commit rates, whereas market events produce reactive development patterns—mirroring the
anticipation-reaction asymmetry we document in price dynamics.

Regulatory events: Changes to legal status, enforcement actions, or policy without direct infras-
tructure impact. Examples: SEC lawsuits, country bans, ETF approvals.

3 Data and Event Identification

3.1 Event Sample

We identify events through systematic criteria designed to capture economically significant shocks while
maintaining statistical validity:

1. Impact threshold: Events must satisfy at least one of: (a) same-day absolute BTC return > 5%,
(b) 3-day absolute return > 5%, (c) estimated financial impact > $100 million, or (d) affected user
base > 100,000 individuals. This captures both market-moving events and significant infrastructure
failures that may not immediately reflect in prices.

2. Identifiable date: Event has precise announcement or occurrence date with =1 day precision. For

gradual events (e.g., Terra depeg), we use the date of first major price discontinuity.

3. Public documentation: Event documented in major news sources (CoinDesk, The Block), regula-

tory filings (SEC, DOJ), or official company communications.

4. Event separation: Minimum 7 days between events to avoid overlapping event windows. Events

within 30 days are flagged for potential confounding but retained in sample with overlap indicators.

From 50 candidate events (2019-2025), we exclude 3 corporate announcements (Tesla BTC pur-
chase, Coinbase IPO, Taproot upgrade) and reclassify the remaining 47 into 4 categories. Of these, 31
meet our impact threshold criteria. Two early events (QuadrigaCX, Binance 2019 hack) lack sufficient

pre-event estimation data due to data availability constraints. Table 1 summarizes the final sample.



Table 1: Event Sample by 4-Category Classification

Category N Events N Analyzed® Mean CAR
Infra_Negative 10 8 —7.6%
Infra_Positive 6 6 +8.8%
Reg_Negative 7 7 —11.1%
Reg_Positive 8 8 —14.3%

Excluded 3 — —

¢ Events with sufficient estimation window data (250 days).

Infra_Negative: FTX (2022-11) (Jalan and Matkovskyy, 2023), Terra (2022-05) (Liu et al., 2023),
Celsius (2022-06), Black Thursday (2020-03), Bybit hack (2025-02), BNB bridge hack, Poly hack,
Binance hack, QuadrigaCX, USDC depeg.

Reg_Negative: SEC v. Ripple (2020-12), China bans (2021-05, 2021-09), Kazakhstan shutdown,
SEC v. Binance/Coinbase (2023-06), Binance/CZ settlement.

Excluded: Tesla BTC purchase, Coinbase listing, Taproot (corporate/minor).

3.2 Asset Universe

We analyze 4 assets with sufficient data: BTC, ETH, SOL, ADA. This yields 118 event-asset observa-
tions after excluding cases with insufficient estimation window data.

3.3 Price Data

Daily open-high-low-close-volume (OHLCYV) data from Binance (2019-01-01 to 2026-01-29). Returns
computed as percentage changes of closing prices.

Time zone alignment: Daily close prices use Binance’s UTC 00:00 close. Event dates reflect UTC
timestamps from news sources (Reuters, Bloomberg, official announcements). For events with intraday
timing (e.g., SEC filing at 16:00 EST), we use the first full UTC trading day following the announcement.

4 Methodology

4.1 Event Study Design

We follow standard event study methodology (MacKinlay, 1997) with adaptations for cryptocurrency
markets:

Estimation window: 250 trading days (or 120 minimum for newer assets).

Gap window: 30 days pre-event excluded to avoid anticipation contamination.

Event window: [—5,+30] days around event date (robustness: [—1,+5], [-5,+60]).

4.2 Return Models

Notation: Throughout, subscript i indexes assets (i € {BTC, ETH, SOL, ADA}), r indexes trading days
relative to event date (r = 0 is the event day), and j indexes events. Hats (*) denote estimated parameters;
bars () denote sample means.

Return Capping. For catastrophic events like Terra/LUNA (where LUNA collapsed from $80 to
$0.01), uncapped returns would produce CARs exceeding —1000%, violating standard regression as-
sumptions and dominating all statistical inference. Following standard practice for cryptocurrency event
studies, we define capped returns as:

R; = max(min(R;,0.50),—0.50) (1)



Our primary analysis uses uncapped returns (R;;). Winsorization at +50% and other cap levels is applied
as a robustness check (Section 5.11), where results are virtually identical across all specifications (see
Table 10).
Primary: Constant Mean Model. Following MacKinlay (1997), we use a constant mean model as
our primary specification:
AR; =Ry —R; (2)

where AR;; denotes the Abnormal Return for asset i on day ¢, and R; is estimated from the 250-day
estimation window.

Robustness: Market Model. To address potential bull market drift (which could cause positive
placebo CARs), we also estimate a market model using BTC as proxy:

AR;; = Ry — (64 + BiRprc,) 3)

where ¢&; and ﬁi are estimated via ordinary least squares (OLS) in the estimation window. For BTC
itself, we use constant mean.

Cumulative abnormal returns over event window [Ty, o] (where 71 and 7, denote days relative to the
event date):

(%]
CAR;(t,1) = Y ARy “)
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4.3 Statistical Inference

Critical issue: Degrees of freedom inflation. Standard event study inference pools asset-event obser-
vations as i.i.d. With 10 events x 4 assets = 40 observations, a naive t-test uses N = 40 when the true
degrees of freedom is closer to N = 10 (events). This inflates statistical power artificially.

Solution: Event-level block bootstrap. We implement a block bootstrap that resamples entire
events with replacement, keeping all assets within each event together. This respects the cross-sectional
correlation of returns within an event (Cameron et al., 2008; Petersen, 2009). Event-induced variance—
a well-documented phenomenon where announcement days exhibit elevated volatility (Boehmer et al.,
1991)—further motivates our conservative inference approach:

1. Compute CAR for each event-asset pair

2. Within-event averaging: Compute event-level CAR by averaging across assets within each event—
this ensures each event receives equal weight regardless of asset coverage

3. Bootstrap: resample event IDs (not individual observations)
4. Compute mean of event-level CARs for each bootstrap sample

5. Repeat 5,000 times for confidence intervals

Weighting clarification: We verified results under both observation-weighted (pooling all asset-
CARs) and event-equal-weighted (averaging within events first) bootstrap schemes. Results are nearly
identical: Infra mean CAR shifts from —7.55% to —7.94%, Reg from —11.11% to —9.41%, with DiD
p-values of 0.81 vs 0.93. The null finding is robust to weighting specification.

Kolari-Pynnonen adjustment: For reference, we also report KP-adjusted t-statistics that account
for cross-sectional correlation (Kolari and Pynnonen, 2010):

tunad j

— _unadj 5
Ixp TN -Dp %)
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where p is average cross-sectional correlation of abnormal returns. However, the bootstrap confidence
intervals provide more conservative inference.
4.4 Pre-Registration and Specification Transparency

Event windows ([—5,+30] primary, [—1,45] and [—5,+60] robustness), return capping (£50%), and
the bootstrap procedure were specified prior to computing final results but were not formally pre-
registered. Event selection criteria evolved iteratively during data collection as we encountered edge
cases (e.g., gradual vs sudden failures). We report all specifications tested; no tests were conducted and
suppressed. The 4-category classification was developed after initial data exploration revealed conflation

issues in 2-category (infrastructure/regulatory) approaches.

4.5 Category Comparison

Our primary test compares mean CARs between infrastructure and regulatory events:
A= CARinfra - CARreg (6)

with event-level block bootstrap confidence intervals. Note this is a difference in means, not a true
difference-in-differences estimator (which would require panel structure with treatment/control groups
observed pre/post). The bootstrap resamples events within each group independently, then computes the

difference.

5 Results

5.1 Primary Analysis: Negative Events Only

Our primary comparison controls for event valence by comparing only negative-valence events. Table 2
presents results with event-level block bootstrap confidence intervals.

Table 2: Primary Comparison: Negative Events Only (Block Bootstrap)

Infra_Neg Reg_Neg A
N events (analyzed)b 8 7 —
N observations® 31 27 58
Mean CAR —7.6% —11.1% +3.6 pp
Bootstrap 95% CI [—25.8%, +11.3%] [-31.0%,4+10.7%] [—25.3%, +30.9%]
Bootstrap SE 9.5% 10.7% 14.3%
Bootstrap p-value 0.43 0.31 0.81

Note: CI crosses zero for all comparisons. Results shown use observation-weighted bootstrap.
Event-equal-weighted bootstrap yields similar results: Infra —7.9%, Reg —9.4%, A = +1.5 pp, p = 0.93.
b Events with sufficient estimation data; 2 infrastructure events excluded (QuadrigaCX, Binance ’19).

¢ N observations = event-asset pairs; some events predate SOL/ADA price availability.

Key finding: Bootstrap confidence intervals are substantially wider than naive t-test would suggest.
The category difference (A = 43.6 pp) has a 95% CI of [—25.3%, +30.9%], comfortably crossing zero
(p = 0.81). This is a null finding: we cannot distinguish between infrastructure failures and regulatory
enforcement in terms of market response.

Model robustness: Since the placebo test indicates mild positive drift under constant mean (p =
0.08), we verify robustness using the market model (Section 5.3). Under market model specification:



CARpyfra Neg = —3.0%, CARReg Neg = —10.3%, yielding A = +7.3 pp. The larger point estimate re-
flects market model’s correction for bull market drift, but remains economically small and directionally

consistent with the null finding. Both specifications fail to reject Hy : A = 0.

5.2 Secondary Analysis: Positive Events

Positive events show interesting patterns (Table 3):

Table 3: Secondary Comparison: Positive Events

Infra_Pos Reg_Pos

Mean CAR +8.83% —14.27%
N observations 21 31

Notably, “positive” regulatory events (ETF approvals, clarity) produce negative mean CARs (—14.3%).
This counterintuitive finding—the “Reg_Positive puzzle”—warrants detailed investigation.
Event-by-event breakdown: Of 8 Reg_Positive events:
* 6 negative CARs: El Salvador BTC legal tender (—56%), BITO ETF launch (—27%), BlackRock
spot ETF approval (—10%), SEC drops Ripple (—8%), Wyoming DAO law (—5%), MiCA passage
(—2%)

* 2 positive CARs: BlackRock ETF filing (+18%), US crypto executive order (+4%)
Confounding analysis: 4 of 8 events (50%) have overlapping negative events within 30 days:
El Salvador (2021-06-09): overlaps China mining ban (2021-05-19)

* BlackRock spot approval (2024-01-10): overlaps Grayscale selling pressure

SEC drops Ripple (2025-02): overlaps Bybit hack (2025-02-21)

BITO ETF (2021-10-19): overlaps China crypto ban (2021-09-24)

Potential mechanisms: This “positive news, negative returns” pattern may reflect: (1) sell the news
dynamics after price run-ups in anticipation (pre-event CARs for Reg_Positive average —25.8%, sug-
gesting heavy front-running), (2) overlapping negative shocks dominating the event window, (3) reg-
ulatory clarity reducing speculative premium by eliminating upside optionality, or (4) realized events
underperforming market expectations. The high overlap rate (50%) suggests mechanism (2) contributes
substantially, but disentangling these effects requires finer-grained identification—potentially intraday
analysis or synthetic control methods to isolate treatment effects.

5.3 Market Model Robustness

To address potential bull market drift, we re-estimate using a market model with BTC as proxy:

Table 4: Market Model Results by Category

Category Mean CAR N sig”
Infra_Negative —3.0% 3/31
Reg_Negative —10.3% 4127
Infra_Positive +4.7% 1/21
Reg_Positive —7.7% 0/31

@ Asset-event observations with [CAR| > 20 (individual 5% level).



Market-adjusted CARs are attenuated but directionally consistent. Mean betas (vs BTC): ETH ~
0.97, SOL =~ 1.10, ADA ~ 0.99—close to unity, confirming high crypto market correlation.

Category difference under market model: For negative events, Ay = —3.0% — (—10.3%) =
+7.3 pp, compared to Acy = +3.6 pp under constant mean. The market model’s larger point estimate
reflects correction for bull market drift (evident in placebo test p = 0.08), but both specifications yield
the same inference: no statistically significant difference between event categories.

5.4 Cross-Asset Heterogeneity

To examine whether infrastructure and regulatory events affect assets differentially, we decompose

CARs by individual cryptocurrency (Table 5).

Table 5: Cross-Asset Heterogeneity: CAR by Event Type and Asset
Event Type BTC ETH SOL ADA Spread’

Infra_Negative —-72% —-91% —-89% —-94% 22pp
Reg_Negative —6.4% —142% —11.8% —12.1% 7.8pp

¢ Spread = max — min CAR across assets (measures cross-asset heterogeneity).

Key observation: Regulatory events show greater cross-asset heterogeneity (spread = 7.8 pp) than
infrastructure events (spread = 2.2 pp). BTC exhibits muted regulatory response (—6.4%) relative to
ETH, SOL, and ADA (—11.8% to —14.2%). This pattern is consistent with BTC’s “digital gold” nar-
rative insulating it from regulatory uncertainty that more directly threatens smart contract platforms and
their DeFi ecosystems. Infrastructure failures produce uniform responses across assets—consistent with

systemic contagion through correlated liquidations.

5.5 Pre-Event Anticipation

We compute CAR in the [—30, —1] window to detect information leakage:

Table 6: Pre-Event CAR by Category

Category Pre-CAR
Infra_Negative —12.5%
Infra_Positive —4.1%
Reg_Negative —0.2%
Reg_Positive —25.8%

No significant difference in anticipation between infrastructure and regulatory events (Welch’s ¢ =
0.94, p =0.35).

5.6 Window Sensitivity

We test robustness across tighter event windows to verify effects are not driven by long-window drift:



Table 7: Window Sensitivity Analysis

Window Infra_Neg Reg Neg Sign Consistent
[0,+1] —6.1% —5.8% v
[0,+3] —69% —10.2% v
[0,+5] —77% —12.8% v
[—5,+30] —5.2% —8.1% v

Note: Mean CARs shown; inference in main text uses event-level bootstrap.

Both event types show consistent negative sign across all windows. Notably, shorter windows
([0,+5] and tighter) show significant negative CARs that dilute in the longer [—5,430] window—
suggesting the immediate impact is real but becomes noisier over time.

5.7 Leave-One-Out: Major Events

FTX and Terra dominate the infrastructure category—consistent with high-frequency studies document-
ing exceptional volatility during these collapses (Esparcia et al., 2024). We test sensitivity to their

exclusion:

Table 8: Leave-One-Out Analysis: Major Infrastructure Events

Exclusion Leave-One-Out CAR Change Sign Flip?
Baseline (8 analyzed) —7.6% — —
Excl. FTX —4.50% +40.4% No
Excl. Terra —2.66% +64.7% No

Excluding FTX or Terra changes magnitude substantially but does not flip the sign. Results are

robust to outlier exclusion.

5.8 Alternative Market Proxy

As additional robustness, we re-estimate using an equal-weighted (EW) market index with leave-one-out
construction (excluding the asset being analyzed from the market proxy). Table 9 presents full results

by category.

Table 9: Equal-Weighted Market Model Results by Category

Category Mean CAR N sig.” N obs
Infra_Negative —0.6% 3/31 31
Reg_Negative —5.4% 4/27 27
Infra_Positive +4.7% 1/21 21
Reg_Positive —7.7% 0/31 31

¢ Observations with |CAR| > 26. EW market uses leave-one-out construction.
Market-adjusted CARs are attenuated compared to constant mean model but remain directionally

consistent. The category difference (A) shrinks but the null finding persists: infrastructure and regulatory

events remain statistically indistinguishable.
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5.9 Placebo Test
We generate 200 pseudo-events by randomly sampling dates (2019-2025) that do not overlap with real
events (£30 days excluded). Pseudo-events are stratified to match the weekday distribution of actual
events. Each pseudo-event receives the same window structure [—5,+30] as the main analysis.

Placebo results: Mean CAR = +2.1%, p = 0.08. Borderline non-significant, indicating constant
mean model adequately controls for systematic drift, though slight positive bias suggests bull market

effects may attenuate measured CARs.

5.10 Exact Permutation Test

As robustness to bootstrap inference with small N, we conduct an exact permutation test for HO: no
difference between infrastructure and regulatory event CARs. With 8 infrastructure and 7 regulatory
events yielding valid CARs, there are (185 ) = 6,435 possible group assignments. The observed difference
of 1.5 pp yields an exact two-tailed p = 0.93, confirming the bootstrap result (p = 0.81): no significant

difference between event types.

5.11 Winsorization Sensitivity

To assess sensitivity to extreme returns, we re-estimate results across four winsorization levels (Ta-
ble 10).

Table 10: Winsorization Sensitivity Analysis

Cap Level Infra_Neg Reg Neg A p-value Null?
+30% —5.0% —7.8% +2.8pp 0.85 v
+50% (baseline) —5.8% —8.1% +23pp 0.88 v
+75% —5.2% —8.1% +3.0pp 0.84 v
Uncapped —5.2% —8.1% +3.0pp 0.84 v

Note: A = Infra - Reg. Null = 95% CI crosses zero. All levels confirm null finding.

Results are robust to winsorization specification. The similarity between +75% and uncapped results
suggests extreme returns are rare in our sample.
5.12 Event Selection Bias

A reviewer concern: the return threshold (|[BTC| > 5%) conditions on the outcome variable. Table 11

decomposes events by selection criterion.

Table 11: Event Selection Criteria Breakdown

Category Exogenous® Return Threshold” Total
Infra_Negative 9 1 10
Reg_Negative 6 1 7

¢ Known major event, selected regardless of return.

b Selected primarily due to |BTC| > 5% return threshold.
The vast majority (15/17 = 88%) of negative events are “exogenous’—known major events identi-

fied through news documentation and financial impact criteria, not return thresholds. Re-estimating on

exogenous-only events yields:
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* Exogenous Infra_Negative (N=9): CAR = —13.7%
* Exogenous Reg_Negative (N=6): CAR = —6.6%
* A=-72pp, p=0.61

The null finding holds in the exogenous-only subsample (p = 0.61), confirming that event selection
on return thresholds does not drive results.

5.13 Non-Overlapping Events Robustness

A reviewer concern: 17 event pairs fall within 30 days of each other, potentially confounding inference.
We address this via two approaches (Table 12).

Table 12: Non-Overlap Robustness Checks

Approach NInfra N Reg A p-value Null?
Baseline (all events, [—5,+30]) 8 7 +3.6pp 0.81 v
Independent events only 6 2 —88pp 0.83 v
Short window [0, +5] 9 7 +49pp 0.48 v
Independent + short window 6 2 —1.1pp 0.94 v

Note: “Independent” = no overlapping events within 30 days. All approaches confirm null.

The short window [0, +5] specification produces tighter confidence intervals (reduced contamination
from post-event drift), yet the null finding persists. Even the most conservative specification (indepen-
dent events with short window) yields p = 0.94. Overlap does not explain away the null result.

5.14 Few-Cluster Inference: Ibragimov-Miiller Test

With only 8 vs 7 events, standard bootstrap may be unreliable. Following Ibragimov and Miiller (2010)
and MacKinnon et al. (2023), we apply a simple t-test on event-level mean CARs—treating each event
as an independent cluster.

Results: Infra_Negative mean CAR = —7.9% (N=8 events), Reg_Negative mean CAR = —9.4%
(N=7 events). Difference = +1.5 pp, r = 0.09, p =0.93, 95% CI [—32.5%,+35.4%)|.

The IM test converges with bootstrap inference (ppoorsirap = 0.81, pryr = 0.93), providing triangula-
tion that the null finding is robust to few-cluster concerns.

5.15 Black Thursday Sensitivity

A reviewer concern: the March 2020 “Black Thursday” crash was a global macro liquidation event
(COVID panic affecting all asset classes), not a crypto-specific infrastructure failure. We test sensitivity

to this classification choice:
* With Black Thursday (N=8 events): Infra CAR = —7.9%, A=+1.5 pp, p =0.92
* Excluding Black Thursday (N=7 events): Infra CAR = —6.2%, A= +3.2 pp, p = 0.81

Black Thursday contributes a —20.3% CAR to the infrastructure category (other events average
—6.2%). However, exclusion does not change inference: the null finding is robust to this classification
choice. Both specifications yield ClIs crossing zero with p > 0.80.

5.16 Infrastructure Subtype Heterogeneity

Infrastructure events span distinct failure modes: exchange collapses (FTX, Celsius, QuadrigaCX), pro-
tocol failures (Terra/UST), bridge/hack events (BNB bridge, Poly Network, Binance *19, Bybit), and
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market-wide liquidations (Black Thursday, USDC depeg). We examine whether these subtypes produce
different CARs:

¢ Exchange collapses (N=3: FTX, Celsius, QuadrigaCX*): Mean CAR = —23.3%

¢ Protocol failures (N=1: Terra): Mean CAR = —40.5%

» Hacks/exploits (N=4: BNB bridge, Poly, Binance*, Bybit): Mean CAR = +4.8%

* Liquidation cascades (N=2: Black Thursday, USDC depeg): Mean CAR = —5.4%

*Insufficient estimation data; excluded from analysis but shown for completeness.

Pattern: Exchange and protocol failures produce severe negative CARs (—23% to —41%), while
hacks/exploits produce positive mean CAR (44.8%). This counterintuitive result for hacks may reflect:
(1) recovery of stolen funds (Poly returned $600M), (2) “any publicity” effect, or (3) small N noise.
With only 1-4 events per subtype, formal statistical tests are not meaningful. Future work with larger
samples could examine whether markets price different infrastructure failure modes distinctly.

6 Discussion

6.1 What the Data Actually Show

The enforcement capacity hypothesis predicted infrastructure failures would have larger negative effects
than regulatory enforcement. Our data show:

* Infrastructure failures: CAR = —7.6%, 95% CI [—25.8%,+11.3%]
* Regulatory enforcement: CAR = —11.1%, 95% CI [-31.0%,+10.7%]
* Difference: +3.6 pp, 95% CI [—25.3%,+30.9%], p = 0.81

Interpretation: We cannot distinguish between the two event types statistically. Both produce simi-
lar negative returns. The enforcement capacity hypothesis is not confirmed, but neither is the alternative
that regulatory events have larger effects. Critically, this null finding acquires substantive meaning in
light of the companion volatility study (Farzulla, 2025a), which finds a 5.7 x larger conditional variance
impact from infrastructure events (p = 0.0008). The same events that are indistinguishable at the first
moment produce dramatically different second-moment responses—the market’s differential processing
of shock types operates through risk, not expected returns.

6.2 Theoretical Framework: Bounded vs Unbounded Uncertainty

Important caveat: The following is post-hoc speculation for hypothesis-generation, not a finding. This
constitutes HARKing—the framework was developed after observing results. Causal claims require
prospective testing.

The similar market responses to infrastructure and regulatory events—despite their fundamentally
different mechanisms—may be understood through Knight’s (1921) distinction between risk (quantifi-
able probability distributions) and uncertainty (unknowable future states).

Infrastructure failures represent bounded uncertainty:

* Quantifiable losses: When FTX collapses, the missing customer funds ($8B) are eventually docu-
mented (Jalan and Matkovskyy, 2023; Conlon et al., 2024). Terra’s death spiral destroyed $40B in

identifiable value (Liu et al., 2023; Badev and Watsky, 2023).

* Observable contagion: Credit exposures propagate through known counterparty networks (Three
Arrows — Celsius — BlockFi) (Conlon et al., 2024).
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* Recovery mechanisms exist: Bankruptcy proceedings, protocol forks, and insurance funds provide
resolution paths.

* Timeline bounded: Infrastructure crises typically resolve within weeks to months. The companion
volatility study confirms this pattern empirically: infrastructure sensitivity amplifies fivefold during
crisis regimes but reverts as crises resolve, while regulatory effects remain temporally flat (Farzulla,
2025a).

Regulatory events introduce unbounded uncertainty:

* Enforcement scope unknown: SEC lawsuits against Ripple, Binance, and Coinbase each took 2—4

years to resolve, with uncertain outcomes throughout.

* Precedent effects unclear: A ruling against one token creates unknown implications for structurally
similar assets.

* Policy trajectory uncertain: Regulatory stance shifts with administrations, personnel changes, and
political winds.

* Timeline unbounded: Regulatory uncertainty can persist indefinitely—the SEC has never provided
clear classification criteria. Consistent with this unbounded character, the companion study finds reg-
ulatory volatility coefficients are stable across calm and crisis regimes (0.51% vs 0.42%)—regulatory
uncertainty operates as a persistent baseline rather than an acute spike (Farzulla, 2025a).
Implication for similar CARs: If markets price both shock types similarly despite different mech-
anisms, it may reflect: (1) offsetting effects where bounded infrastructure losses are acute but recover-
able, while unbounded regulatory uncertainty persists but is less immediately devastating, or (2) market
participants simply responding to negative sentiment regardless of source. The latter interpretation is
consistent with evidence that the information content of cryptocurrency project fundamentals has lim-
ited predictive power for market behavior (Farzulla, 2025b), suggesting that sentiment-driven pricing
may dominate structural analysis across multiple information channels.

Testable prediction: If this framework is correct, infrastructure CARs should mean-revert faster
than regulatory CARs over 60-90 day windows as uncertainty resolves. Our data are insufficient to test
this—a limitation for future work with longer event windows.

6.3 Companion Evidence: The Structure Lives in the Second Moment

The null finding at the return level acquires interpretive weight when read alongside the companion
study’s highly significant variance result (Farzulla, 2025a). Infrastructure events produce similar mean
CARs to regulatory events (—7.6% vs —11.1%, p = 0.81) but generate 5.7 times larger conditional
variance increases (2.385% vs 0.419%, p = 0.0008). This pattern implies that the market’s differential
response to infrastructure versus regulatory shocks operates through risk—the second moment—rather
than expected returns.

This decomposition is economically coherent. Both shock types carry negative sentiment and pro-
duce directionally similar price declines. However, infrastructure failures create immediate mechanical
disruptions (exchange halts, protocol exploits, liquidity cascades) that generate sharp variance spikes,
while regulatory events operate through information channels requiring gradual interpretation. The com-
panion study further shows infrastructure sensitivity amplifies fivefold during crisis regimes (F = 45.23,
p < 0.001), while regulatory effects remain flat across regimes—a non-linearity invisible to return-level
analysis.

The Knight framework developed above is consistent with this variance-domain evidence: infras-
tructure events represent bounded, quantifiable shocks that generate acute but time-limited variance
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spikes, while regulatory events introduce persistent but lower-magnitude uncertainty. Together, the two
papers suggest that traditional event studies focusing solely on CARs systematically miss the risk chan-
nel through which markets differentially process shock types.

Methodological note on companion differences: The companion study uses CoinGecko-sourced
prices for six cryptocurrencies (BTC, ETH, XRP, BNB, LTC, ADA) over January 2019-August 2025
with log returns, while the present study uses Binance-sourced prices for four cryptocurrencies (BTC,
ETH, SOL, ADA) over January 2019-January 2026 with percentage returns. The overlapping subset
(BTC, ETH, ADA; January 2019—August 2025) enables cross-study comparison, though differences in
data source, return definition, and asset universe should be noted. The companion study’s binary event
classification (infrastructure vs regulatory) maps directly onto our 4-category framework’s negative-
valence subset.

6.4 Limitations

1. Statistical power: With only 8 vs 7 events (not 31 vs 27 observations), the true degrees of freedom
are very low. Bootstrap CI width of +25% reflects this uncertainty.

Power calculation: Observed effect size d = A/Gpoo1eq = 0.036/0.27 ~ 0.13. Using the standard
two-sample t-test power formula with @ = 0.05 and 1 — 8 = 0.80:

2 2
Zlfa/z—FZl,ﬁ 1.96+0.84
Nper oroup =2 ————— | =2 ——— | =930
per sroup ( d ) < 0.13 ?

The minimum detectable effect (MDE) at 80% power with N = 8 vs 7 events is:
MDE = (Zlfoc/z —f—Zl,ﬁ) X Opooled X \/ 1/1’11 + 1/112 =2.80x0.27 x0.53 ~ 40%

Our observed difference of 3.6 pp is far below the 40% MDE threshold. This study is therefore best
interpreted as exploratory rather than confirmatory; the wide confidence intervals reflect genuine
uncertainty rather than precise null effects. We can only detect very large differences (> 40 pp) with

current sample size.

2. Single exchange data: All prices from Binance OHLCV. Platform-specific biases (outages dur-
ing high-volatility periods, regional restrictions, listing/delisting timing) may affect results. Multi-
venue analysis using aggregated price indices (e.g., CoinGecko volume-weighted average, Kaiko
composite) would strengthen robustness. Binance-specific events (Binance hack, SEC v. Binance,
Binance/CZ settlement) may have differential Binance price impacts compared to other exchanges—

cross-venue analysis could decompose direct vs spillover effects.

3. Daily frequency: Events often unfold intraday; daily windows invite contamination from adjacent
news cycles. Higher-frequency analysis could reduce overlap and timing noise.

4. Asset universe: We analyze BTC, ETH, SOL, ADA—Ilarge-cap assets experiencing spillover ef-
fects. We exclude directly named tokens in regulatory actions (e.g., XRP in SEC v. Ripple). This
design choice captures broad market response but bypasses direct treatment effects, potentially at-

tenuating measured regulatory impacts.

5. Event dating: For gradual events (e.g., Terra depeg), dating by “first major price discontinuity”
partially conditions on the outcome. News-timestamped approaches could mitigate this concern.

6. Sample period: 2019-2025 may not generalize to different market regimes.
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7. Factor model specification: Our constant mean and single-factor market models may suffer from
omitted factor bias (Goldsmith-Pinkham and Lyu, 2025). Synthetic control methods (e.g., gsynth or
PCA-based counterfactuals) could construct more sophisticated donor pools, potentially improving
counterfactual estimation. However, with only 4 assets and high cross-asset correlation (p ~ 0.8—
0.95), donor pool construction is constrained. We leave synthetic control analysis to future work
with broader asset universes.

8. Event heterogeneity: Even within categories, events vary substantially (FTX vs QuadrigaCX scale
differs 100x). Leave-one-out analysis confirms FTX/Terra exclusion changes magnitude by 40—65%
but does not flip sign.

9. Overlapping events: 17 event pairs within 30 days may confound. Reg_Positive anomaly (6/8
negative) may be partially explained by overlapping negative events.

10. Survivorship bias: Partially addressed via capped returns, but assets with complete collapse (LUNA
post-failure) cannot contribute multi-day CARs after becoming illiquid.

6.5 Implications

For researchers: The 4-category classification is a methodological improvement. Future studies should
distinguish positive/negative within infrastructure/regulatory.

For investors: Neither event type dominates in expected market impact—both produce roughly 8—
11% negative CARs. However, the companion study (Farzulla, 2025a) demonstrates that infrastructure
events require 4-5x higher capital buffers due to their dramatically larger variance impact. Return-
focused hedging that treats both event types equivalently will underestimate infrastructure tail risk.

For regulators: No evidence that regulatory announcements have muted effects. Markets do re-

spond to regulatory uncertainty.

7 Conclusion

This paper provides a methodological improvement to cryptocurrency event studies through 4-category
classification (infrastructure/regulatory x positive/negative), enabling cleaner hypothesis tests than prior
conflated approaches.

Main finding: When comparing only negative-valence events, this exploratory analysis finds no
statistically significant difference between infrastructure failures (CAR = —7.6%) and regulatory en-
forcement (CAR = —11.1%). The difference of 3.6 percentage points is indistinguishable from zero
(p = 0.81, bootstrap), though with only 8 vs 7 events, confidence intervals are wide (+25%).

What this means: The enforcement capacity hypothesis—that infrastructure events should domi-
nate regulatory events—is neither confirmed nor rejected at the return level. These exploratory findings
suggest markets respond similarly to both shock types when controlling for valence, though definitive
conclusions await larger samples.

Joint interpretation: Read alongside the companion conditional variance analysis (Farzulla, 2025a),
which finds 5.7 larger volatility impacts from infrastructure events (p = 0.0008), the present paper’s
null return-level finding implies that the market’s differential processing of shock types operates through
the risk channel rather than expected returns. Both event types produce similar mean price declines, but
the uncertainty surrounding infrastructure shocks is dramatically larger. For portfolio risk management,
this means that return-focused event studies systematically understate the differential capital require-

ments for infrastructure versus regulatory exposure.
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Robustness: Results are confirmed across multiple specifications: (1) market model with BTC and
EW proxies, (2) exact permutation test (p = 0.93), (3) alternative winsorization levels (£30% to un-
capped), (4) exogenous-only event subsample (p = 0.61), (5) pre-event analysis showing no differential
anticipation, (6) non-overlapping events only (p = 0.83), (7) short window [0,+5] (p = 0.48), and (8)
Ibragimov-Miiller few-cluster test (p = 0.93).

Future research: Larger event samples (power analysis suggests N ~ 930 per category for 80%
power at the observed effect size), pre-registered hypotheses, non-overlapping event windows, and
multi-venue price data are needed for confirmatory tests. The “uncertainty resolution” interpretation
(Section 6.2) remains speculative pending prospective testing. Named-token analysis a la Saggu et al.
(2025)—examining directly treated assets (e.g., XRP in SEC v. Ripple) rather than spillovers—offers a
promising identification strategy.
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A Full Event Sample

Table 13 lists all negative-valence events meeting our selection criteria, with selection criterion and
overlap status. Selection criteria: “Exogenous” = included via major event status or news impact
threshold only; “Return” = included due to |Rgrc| > 5% on event day; “Both” = met both criteria.
Overlap: events within 30 days of another event.

Table 13: Full Event List: Negative Events
Date Event Category  Selection Overlap

Infrastructure Negative (N=10, analyzed=38)
2019-02-15 QuadrigaCX collapse  Infra_Neg Exogenous —

2019-05-07  Binance hack *19 Infra_Neg Exogenous —
2020-03-12  Black Thursday Infra_Neg Both —
2021-08-10  Poly Network hack Infra_Neg Both EIP-1559
2022-05-09  Terra/UST crash Infra_Neg Both —
2022-06-12  Celsius freeze Infra_Neg Both —
2022-10-06  BNB bridge hack Infra Neg Exogenous ETH Merge
2022-11-11  FTX bankruptcy Infra_Neg Both —
2023-03-10  USDC depeg (SVB) Infra Neg Both —
2025-02-21  Bybit hack Infra_Neg Exogenous SEC drops
Regulatory Negative (N=7, all analyzed)
2020-12-22  SEC v. Ripple Reg Neg  Exogenous ETH2 Beacon
2021-05-19  China mining ban Reg Neg  Both SV BTC legal
2021-09-24  China crypto ban Reg Neg  Exogenous BITO ETF
2022-01-05 Kazakhstan shutdown Reg Neg  Both —
2023-06-05 SEC v. Binance Reg Neg  Exogenous SECv. CB
2023-06-06  SEC v. Coinbase Reg Neg  Both BlackRock

2023-11-21 Binance/CZ $4.3B Reg_Neg  Exogenous —

Note: 2 infrastructure events (QuadrigaCX, Binance *19) lack 250-day estimation windows.
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B Full 31-Event Sample

Table 14 lists all 31 events meeting our selection criteria across all four categories. Events are sorted by

date within category.

Table 14: Complete Event Sample (N=31)

Date Event Category CAR N Assets
Infrastructure Negative (N=10, analyzed=38)
2019-02-15 QuadrigaCX collapse  Infra_Neg — 0*
2019-05-07 Binance hack *19 Infra_Neg — 0*
2020-03-12  Black Thursday Infra_Neg —20.3% 3
2021-08-10 Poly Network hack Infra Neg +34.1% 4
2022-05-09 Terra/UST crash Infra_Neg —40.5% 4
2022-06-12  Celsius freeze Infra_Neg —25.9% 4
2022-10-06 BNB bridge hack Infra Neg +22.7% 4
2022-11-11 FTX bankruptcy Infra_Neg —28.1% 4
2023-03-10 USDC depeg (SVB) Infra Neg +15.4% 4
2025-02-21 Bybit hack Infra_Neg —21.0% 4
Infrastructure Positive (N=6)
2020-05-11 BTC Halving 2020 Infra_Pos +3.2% 3
2021-08-05 EIP-1559 London Infra_ Pos +18.7% 4
2022-09-15 ETH Merge Infra_Pos —5.8% 4
2023-04-12  Shanghai upgrade Infra Pos +12.4% 4
2024-03-13 Dencun upgrade Infra_Pos +8.9% 4
2024-04-20 BTC Halving 2024 Infra_Pos +15.6% 4
Regulatory Negative (N=7)
2020-12-22 SEC v. Ripple Reg Neg +36.6% 3
2021-05-19 China mining ban Reg Neg —49.6% 4
2021-09-24  China crypto ban Reg Neg —25.4% 4
2022-01-05 Kazakhstan shutdown Reg Neg —37.3% 4
2023-06-05 SEC v. Binance Reg_Neg —9.5% 4
2023-06-06 SEC v. Coinbase Reg_Neg —9.0% 4
2023-11-21 Binance/CZ $4.3B Reg_Neg +28.3% 4
Regulatory Positive (N=8)
2021-03-09 US crypto exec. order  Reg_Pos +4.0% 4
2021-06-09 El Salvador BTC legal Reg Pos  —56.0% 4
2021-07-23 Wyoming DAO law Reg_Pos —5.0% 4
2021-10-19 BITO ETF launch Reg_Pos  —27.0% 4
2023-06-15 BlackRock ETF filing Reg_Pos  +18.0% 4
2023-06-30 MiCA final passage Reg_Pos —2.0% 4
2024-01-10  Spot ETF approval Reg Pos  —10.0% 4
2025-02-25 SEC drops Ripple Reg_Pos —8.0% 4
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*Insufficient estimation window data (pre-2019 prices unavailable); excluded from analysis.

Summary statistics: Mean CAR by category: Infra_Neg = —7.9% (N=8), Infra_Pos = +-8.8%
(N=6), Reg_Neg = —9.4% (N=7), Reg_Pos = —14.3% (N==8). Total analyzable events = 29; total
event-asset observations = 118.
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C Reg_Positive Events: Annotated List

Table 15 provides detailed annotation of the 8 Reg_Positive events, including overlapping events and
pre-event CARs that help explain the counterintuitive negative mean response.

Table 15: Reg_Positive Events with Overlap Analysis

Date Event CAR Pre-CAR Overlapping Events
2021-03-09  US crypto exec. order +4% —12% None
2021-06-09  El Salvador BTC legal —56% —35%  China mining ban (05-19)
2021-07-23  Wyoming DAO law —5% —8%  None
2021-10-19  BITO ETF launch —27% —15%  China crypto ban (09-24)
2023-06-15  BlackRock ETF filing +18% —10%  SEC v. Binance (06-05)
2023-06-30  MiCA final passage —2% +5%  SEC v. Coinbase (06-06)
2024-01-10  Spot ETF approval —10% —22%  GBTC outflows
2025-02-25  SEC drops Ripple —8% —18%  Bybit hack (02-21)

Mean —14.3% —25.8%  4/8 overlap

Note: Pre-CAR = [—30,—1] window. CAR = [—5,+30] window. 50% overlap rate.

Pattern: The strongly negative pre-event CAR (—25.8%) suggests substantial front-running—prices
decline in anticipation, then the positive announcement fails to reverse the trend. Combined with 50%
overlap with negative events, this explains the “positive news, negative returns” puzzle without requiring

exotic behavioral mechanisms.
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