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Abstract

Contemporary computer vision architectures assume geometric primacy: spatial processing begins
with feature extraction, proceeds to object recognition, and only subsequently computes functional
properties. We investigate whether vision-language models (VLMs) exhibit an alternative pattern—
context-dependent affordance computation where functional semantics precede geometric decom-
position. Drawing on ecological psychology (Gibson), embodied cognition (Varela, No¢), and phe-
nomenology (Heidegger, Merleau-Ponty), we test whether VLM behavior aligns with a semantic-
first architecture. Through a large-scale computational study (n = 3,213 scene-context pairs from
COCO-2017) using Qwen-VL 30B subject to systematic context priming across 7 agentic personas,
we demonstrate massive affordance drift: mean Jaccard similarity between context conditions is
0.0946 (95% CI: [0.0934, 0.0958], p < 0.0001), indicating that > 90% of functional scene descrip-
tion is context-dependent. Tucker decomposition reveals orthogonal latent factors corresponding
to distinct functional manifolds. Comparison with 50,000 human affordance annotations from Vi-
sual Genome validates that context-dependent extraction parallels human perceptual patterns. These
findings establish that VLMs compute affordances in a radically context-dependent manner, propose
this as a candidate architecture for biological spatial cognition, and suggest practical implications for
robotics: dynamic, query-dependent ontological projection (JIT Ontology) rather than static world
modeling.
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Figure 1: Comparison of visual processing pipelines. (a) Standard computer vision computes geometry
before semantics, producing a fixed scene ontology. (b) The proposed Semantic-First architecture con-
ditions geometric processing on agent context ®, enabling dynamic, task-relevant representations.

1 Introduction

Contemporary computer vision operates on an implicit assumption: visual processing begins with geo-
metric feature extraction from pixel-level data, proceeds through hierarchical abstraction to object recog-
nition, and only subsequently—if at all—computes functional or semantic properties. This pipeline
reflects a Cartesian conception of space as a neutral container:

P std L — F pixel — Ffeature — OObject — Ccontext - Aaffordance (1)

This ordering is not theoretically neutral. It embeds assumptions about perception that have been
challenged by ecological psychology (2), phenomenology (4; 7), and cognitive neuroscience (3). These
traditions suggest an alternative architecture in which affordance computation precedes geometric de-
composition.

We investigate whether this alternative architecture manifests in vision-language models (VLMs).
Our Research Question: Do VLMs exhibit context-dependent affordance computation consistent with
a semantic-first architecture, where functional interpretation precedes and structures geometric repre-
sentation?

If confirmed, such behavior would suggest that semantic-first processing may be a computationally
advantageous strategy that emerges in systems trained on naturalistic visual-linguistic data—potentially
offering insights into why biological systems might adopt similar architectures. The implied processing
order would be:

PsEs : 1 — Tioken — Ceontext = Geolc — Aatfic,0 — Sspatial ()

where the conditioning notation X,;, denotes that representation a is computed conditional on prior
establishment of b, and ® represents agent goal states.

The contributions of this paper are: (1) empirical demonstration that VLMs exhibit massive
context-dependent affordance drift, with > 90% of functional scene ontology varying by agent context;
(2) human validation through comparison with 50,000 Visual Genome affordance annotations, show-
ing that VLM extraction parallels human perceptual patterns; (3) theoretical proposal of semantic-first
processing as a candidate model for biological spatial cognition; and (4) practical implications for
robotics via Just-In-Time (JIT) Ontology.



2 Theoretical Framework

2.1 Formal Definitions

Definition 2.1 (Visual Field). A visual field ¥ is the totality of visual information available to an agent

at time ¢, represented as image 1 € RF*WxC,

Definition 2.2 (Agent State). An agent state ® = (Ogoal, Omotor: Onistory) cCOmprises current goal structure,
available motor repertoire, and relevant experiential history.

Definition 2.3 (Affordance Mapping). An affordance function o : G X C x ® — o/ maps geometric
primitives, context, and agent state to affordance vectors encoding primary action possibility, alternative
actions, and required motor engagement.

2.2 The Semantic-First Hypothesis

We formally state the hypothesis tested in this study:

H1 (Semantic-First): In vision-language models, functional semantics are computed prior
to and condition the representation of geometric structure.

H2 (Context-Dependence): The functional ontology extracted from a given visual field
varies systematically with agent goal state ©.

3 Methodology
3.1 Study Design

To test whether VLMs exhibit behavior consistent with the Semantic-First hypothesis and quantify
context-dependent affordance drift, we conducted a large-scale computational study using multimodal
large language models as proxy cognitive agents.

Dataset: COCO-2017 validation set (6), selecting multi-object scenes with high interaction poten-
tial. Initial corpus: 500 images.

Model: Qwen-VL-30B-Instruct (1), a high-performance vision-language model capable of detailed
spatial reasoning and instruction following.

Inference Parameters: All model queries used temperature = 0.7 to balance affordance diversity
with semantic coherence.

Context Primes: For each image, the model identified critical objects and their affordances under 7
distinct agentic personas (Table 1).

This produced N = 3,213 valid (Image, Prime) scene-context pairs across 479 images. Of these, 360
images produced valid affordance outputs across all seven context primes.

3.2 Analysis Methods

Affordance Drift: We quantified the degree to which functional scene description changes across con-

texts using Jaccard similarity:

ANB
J(A,B) = :AUB: (3)

computed at both word-level (all affordance terms) and object-level (identified objects).

Hypothesis Testing: Permutation tests (10,000 iterations) assessed whether observed Jaccard values
were significantly below 0.5 (the threshold indicating more difference than overlap).



Table 1: Context Prime Conditions
ID Condition Prime Description

PO Neutral Objective analysis

P1  Chef Cooking/food preparation focus

P2 Security Vulnerability/defense assessment

P3  Child Play/exploration focus (4-year-old)

P4  Mobility Obstruction/access (wheelchair
user)

P5 Urgent Immediate survival tool focus (30s
emergency)

P6 Leisure Relaxation/enjoyment, no time
pressure

Table 2: Jaccard Similarity Between Context Primes (n = 9,244 pairs)
Metric Mean SD 95% CI t p

Word-level ~ 0.0946 0.0578 [0.0934, 0.0958] —674.72 < 0.0001 p-Vvalues from permutation
Object-level 0.1192 0.1920 [0.1153,0.1231] —190.72 < 0.0001

test for Hp: p > 0.5. CIs from bootstrap.

Tensor Decomposition: To reveal latent functional structure, affordance text outputs were em-
bedded using sentence-transformers (8) (all-MiniLM-L6-v2, 384 dimensions). The resulting tensor

T € RMimages X Mprimes Xembed a5 decomposed via Tucker decomposition (9):
T =9 X1 U(image) X U(context) X3 U(embed) (4)

The context factor matrix U(¢°"ex) ¢ R7*3 reveals how the 7 primes project onto latent functional

dimensions.

4 Results
4.1 Affordance Drift Analysis

Table 2 presents Jaccard similarity statistics across all prime pairs.

Interpretation: When the agent’s goal context shifts (e.g., Chef to Security), the functional ontology
changes by 90.5%. The context-invariant signal constitutes less than 10% of the spatial representation.
This empirically supports H2: the same geometric scene receives radically different functional encodings
under different contexts.

4.2 Human Baseline Comparison

To validate that context-dependent affordance extraction is not merely an artifact of VLM architecture
but reflects human-like perceptual processing, we compared VLM outputs against human affordance
annotations from Visual Genome (5).

Visual Genome Dataset. Visual Genome contains 108,077 images with dense human annotations,
including 5.4M region descriptions. We extracted 50,000 affordance-containing regions (19.3% of total)
by filtering for functional language (e.g., “‘sit”, “eat”, “walk”).

Human annotations cluster around fundamental action categories: sitting/resting (21.5%), walk-
ing/moving (21.4%), and eating/dining (16.5%). Crucially, humans describe functional possibilities—"“a



Table 3: Human vs VLM Affordance Extraction Datasets
Property Visual Genome (Human) Qwen-VL (Model)

Total annotations 50,000 regions 8,582 objects

Source images 108,077 (COCO overlap) COCO0-2017 validation
Annotation type Dense region descriptions  Context-dependent extraction
Unique keywords 51 affordance terms 2,847 distinct objects
Action categories 8 major types 7 context personas

Table 4: Top Affordance Keywords in Human Annotations (Visual Genome)

Rank Keyword Frequency

1 walk 10,852
2 table 7,571
3 chair 6,102
4 stand 3,330
5 sit 3,125
6 desk 3,014
7 eat 2,714
8 bed 2,554
9 shelf 2,025
10 counter 1,631

chair to sit on”—rather than geometric properties.

Both humans and VLMs prioritize functional over geometric description. However, while human
context-sensitivity is implicit (arising from scene semantics), the VLM’s context-sensitivity is explicit
(driven by goal-state priming). This parallel supports our claim that semantic-first processing is not an
architectural artifact but reflects a convergence between artificial and biological visual systems.

4.3 Latent Functional Structure

Tucker decomposition (rank [10,3,10] on tensor of shape 360 x 7 x 384) achieved 46.6% explained
variance. Table 8 presents the context factor loadings.

Interpretation: The 7 context primes project onto 2 primary functional dimensions (explaining
99.1% of context variance):

* Dimension 2 (49.2%): Chef vs. all others—utilitarian/consumption axis
* Dimension 3 (49.9%): Child vs. Mobility—exploration/access axis

5 Discussion

Our findings establish that VLMs compute affordances in a radically context-dependent manner, with
> 90% of functional scene ontology varying by agent goal state. This context-dependency is not noise
but structure: Tucker decomposition reveals orthogonal functional dimensions corresponding to distinct
goal types (utilitarian, exploratory, protective).

The comparison with Visual Genome human annotations validates that this pattern is not an artifact
of VLM architecture but reflects human-like perceptual prioritization. Both humans and VLMs extract
affordances as primary units, with context determining which functional possibilities become salient.



Table 5: Action

Categories in Human Affordance Annotations

Action Category  Regions

Sitting/Resting 10,757
Walking/Moving 10,709
Eating/Dining 8,253
Other 11,709
Reading/Writing 3,803
Sleeping/Lying 2,563
Washing/Cleaning 1,187
Cooking 1,019
Total 50,000

Table 6: Qwen-VL Context-Dependent Object Extraction

Context Objects Unique Top Extracted

Neutral 1,395

Chef 477
Security 1,311
Child 1,422

Mobility 1,263
Urgent 1,181
Leisure 1,533

687 person, plate, laptop, zebra

361 refrigerator, table, pizza, sink
1,035  tennis racket, laptop, surfboard
972 snow, tennis racket, laptop, skis

796 table, sidewalk, laptop, cat
759 surfboard, tennis racket, laptop
1,298  sky, window, wooden table, zebras

5.1 Implications for Robotics

The semantic-first framework suggests an alternative to static scene graphs: Just-In-Time (JIT) Ontol-

ogy. Rather than pre-computing a complete object inventory, robotic systems could:

1. Accept task-specific goal queries ®

2. Compute affordances A|c g conditioned on current context

3. Generate geometry G|4 only for functionally relevant regions

This reduces computational complexity and matches biological visual processing patterns.

5.2 Limitations and Future Work

Limitations: (1) COCO images may

not capture full ecological diversity; (2) 7 personas may not exhaust

the affordance space; (3) Jaccard similarity treats all terms equally, missing semantic relatedness.
Future Work: (1) Embodied validation through AI2-THOR simulation; (2) Human subject studies
comparing VLM and biological affordance extraction; (3) Robotics implementation of JIT Ontology.

6 Conclusion

This paper demonstrates that vision-language models exhibit context-dependent affordance computa-

tion consistent with a semantic-first

architecture. The > 90% context-dependency in functional scene

description, validated against human Visual Genome annotations, suggests that functional semantics

may be a computational primitive for both artificial and biological visual systems.



Table 7: Comparative Statistics: Human vs VLM Affordance Extraction

Metric Human (VG) Qwen-VL
Affordance coverage 19.3% of regions  Context-dependent
Top focus Furniture/walking Varies by goal
Context sensitivity Implicit Explicit (designed)
Action diversity 8 categories 7 personas
Affordance/language ratio High High

Table 8: Tucker Decomposition: Context Prime Factor Loadings

Prime Dim; Dim, Dimgy
PO: Neutral 041 —-0.12 -0.07
P1: Chef 0.26 0.95 0.09

P2: Security 042 —-0.16 —-0.21
P3: Child 0.37 —-0.13 0.72
P4: Mobility 0.41 0.03 —0.60
P5: Urgent 0.38 —0.15 —-0.06
P6: Leisure 037 —-0.10 0.24

Var. % 09% 49.2% 49.9%

The implications extend beyond academic interest: if spatial cognition is fundamentally semantic-
first, then robotic systems should abandon static world models in favor of dynamic, query-dependent
ontological projection. We have the computational evidence; the engineering challenge now awaits.
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