
DISSENSUS AI WORKING PAPER SERIES

DAI-2513

Autonomous Red Team and Blue Team AI
LLM-Guided Adversarial Security Competition

Murad Farzulla1,2,* Andrew Maksakov1

1Dissensus AI, London, UK 2King’s College London, London, UK

*Correspondence: research@dissensus.ai

January 2026

Abstract

This technical report presents a framework for autonomous adversarial security competition us-
ing large language models (LLMs). We introduce a dual-agent architecture where autonomous red
team and blue team agents compete in isolated environments: the red team attempts to compro-
mise target systems while the blue team defends, detects, and remediates in real time. Phase 1
established the red team infrastructure—a four-layer architecture combining LLM-guided decision
making, retrieval-augmented generation (RAG) over offensive knowledge bases, containerized secu-
rity toolkits, and kernel-level network isolation. Phase 2, presented in this updated report, introduces
the blue team agent with a five-phase defensive methodology (Audit, Detect, Analyze, Remediate,
Harden), an LLM-assisted patch generation framework with rollback support, and a competition
scoring engine that evaluates red vs. blue performance across weighted security dimensions. Key
architectural decisions include agent-orchestrated control flow (addressing limitations in abliterated
models’ structured output capabilities), NetworkPolicy-based isolation, command sandboxing with
defensive tool whitelisting, and MITRE D3FEND integration for defensive knowledge retrieval. The
red team agent achieves autonomous SSH compromise in approximately 90 seconds; the blue team
agent implements a DefenseSandbox restricting operations to whitelisted defensive tools (auditd,
fail2ban, iptables, lynis, rkhunter, chkrootkit, aide, ossec). The competition scoring framework eval-
uates time-to-compromise vs. time-to-detect, patch effectiveness, and stealth metrics. We describe
the full implementation and discuss implications for autonomous security testing at scale.
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Research Context

This work forms part of the Adversarial Systems Research programme at Dissensus AI, investigat-
ing stability, alignment, and friction dynamics in complex systems where competing interests generate
structural conflict. The formal foundations for this programme are developed in the Axiom of Con-
sent (Farzulla, 2025a), which models friction as a coordination primitive in multi-agent systems—the
dual-agent adversarial architecture presented here instantiates those dynamics in a cybersecurity domain
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where offensive and defensive agents generate friction through competing objectives under information
asymmetry.

Autonomous red team systems represent adversarial dynamics in cybersecurity: offensive agents
attempt to identify vulnerabilities while defensive systems attempt to prevent or detect intrusion. The
framework presented here provides infrastructure for studying these dynamics computationally, enabling
controlled experimentation with autonomous adversarial agents in isolated environments. This paper
also draws on our investigation of abliterated language models (Farzulla, 2025b), which examines how
safety-alignment removal affects reasoning capabilities—a finding that directly motivated the agent-
orchestrated control pattern described in Section 3.
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1 Introduction

Open-source software ecosystems face a fundamental scalability challenge: vulnerability discovery can-
not keep pace with package publication. npm hosts over 1.3 million packages, PyPI over 400,000, and
thousands more are published daily across ecosystems. Manual security review is insufficient; vulnera-
bilities remain undiscovered for months or years while attackers maintain timing advantages in zero-day
exploitation.

Recent work has demonstrated that large language models can autonomously exploit real-world vul-
nerabilities: Fang et al. (2024a) show that GPT-4-based agents exploit one-day CVEs with an 87% suc-
cess rate, while Fang et al. (2024b) demonstrate autonomous web application compromise. These results
suggest that autonomous offensive capabilities are no longer hypothetical—they are technically feasible
with current foundation models. At the same time, the red-teaming literature has matured from manual
human evaluation (Ganguli et al., 2022) through semi-automated frameworks to fully autonomous sys-
tems (Zhou et al., 2025), and Meta’s CyberSecEval benchmark suite (Bhatt et al., 2023) has established
standardised evaluation methodology for LLM cybersecurity risks. What remains underdeveloped is
the defensive counterpart: most autonomous security systems focus exclusively on offence, leaving the
question of how autonomous defenders co-evolve with autonomous attackers largely unaddressed.

This paper presents a framework for autonomous security testing using LLM-guided agents that ad-
dresses this gap. The core hypothesis is that autonomous adversarial agents with access to offensive
security knowledge bases can identify vulnerabilities more efficiently than traditional approaches, and
that pairing them with autonomous defensive agents under a competition scoring framework produces
more realistic security testing than single-agent approaches. The dual-agent architecture enforces infor-
mation asymmetry—separate knowledge bases, separate toolkits, separate objectives—that mirrors the
structure of real adversarial engagements.

1.1 Contributions

This report makes the following contributions:

1. A four-layer architecture for autonomous red team agents combining LLM inference, RAG knowl-
edge bases, containerized toolkits, and kernel-level isolation (Phase 1)

2. Analysis of agent-orchestrated versus LLM-orchestrated control patterns, with empirical evidence
for agent-orchestrated superiority with abliterated models (Phase 1)

3. Safety framework combining NetworkPolicy isolation, command sandboxing, and resource con-
straints (Phase 1)

4. An autonomous blue team agent implementing a five-phase defensive methodology with Defens-
eSandbox and MITRE D3FEND knowledge base integration (Phase 2)

5. An LLM-assisted patch generation framework with known-pattern matching, LLM fallback, vali-
dation, and automatic rollback (Phase 2)

6. A competition scoring engine with weighted evaluation across vulnerability remediation, service
availability, detection speed, and hardening effectiveness (Phase 2)

7. Full dual-LLM adversarial competition implementation with Kubernetes deployment manifests
and namespace isolation (Phase 2)
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1.2 Scope and Limitations

This report describes Phase 1 (red team infrastructure) and Phase 2 (blue team development) of a multi-
phase research program. Phase 1 demonstrates technical feasibility of autonomous attack execution
against intentionally vulnerable targets. Phase 2 extends the framework with autonomous defensive
capabilities, patch generation, and competition scoring. Extension to multi-agent coordination, rein-
forcement learning, and real-world vulnerability discovery remains future work.

2 Architecture

The system comprises four layers operating in a closed loop, illustrated in Figure 1.

2.1 Layer 1: LLM Decision Making

The decision layer provides strategic reasoning for attack planning. We use locally-hosted inference via
LM Studio with abliterated (uncensored) models—specifically Qwen 2.5 Coder 14B Instruct—enabling
security-focused queries that standard safety-tuned models refuse.

Inference parameters are optimized for deterministic command generation:

• Temperature: 0.4 (low for consistency)

• Min-P: 0.08 (dynamic sampling)

• Repeat penalty: 1.08 (prevents loops)

• Max tokens: 2048

Min-P sampling adapts dynamically to model confidence: when the top token has 80% probability,
the threshold becomes 6.4% (0.08× 0.8); when confidence is low (20%), the threshold drops to 1.6%.
This produces more reliable command generation than static Top-P.

2.2 Layer 2: Knowledge Base

The RAG server implements semantic search over 5,395 offensive security documents using FAISS
indexing with all-MiniLM-L6-v2 embeddings (384 dimensions). Document sources include:

• GTFOBins: Unix binary exploitation techniques for privilege escalation

• Atomic Red Team: MITRE ATT&CK-mapped adversary emulation

• HackTricks: Penetration testing methodologies

The server exposes MCP (Model Context Protocol) endpoints for semantic search and technique
listing, achieving sub-100ms query latency.

2.3 Layer 3: Autonomous Agent

The agent implements an OODA loop—a security-domain variant of the ReAct paradigm (Yao et al.,
2023) that interleaves reasoning and acting, augmented with retrieval-augmented generation (Lewis et
al., 2020) for domain-specific knowledge:

1. Observe: Query current system state and prior results

2. Orient: Search knowledge base for relevant techniques
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+-----------------------------------------------------------+
| Layer 1: LLM Decision Making (LM Studio) |
| - Qwen 2.5 Coder 14B (abliterated) |
| - Temperature 0.4, Min-P 0.08 |
+----------------------------+------------------------------+

|
v

+-----------------------------------------------------------+
| Layer 2: Knowledge Base (K3s Cluster) |
| - MCP RAG Server |
| - FAISS index (5,395 documents) |
| - GTFOBins + Atomic Red Team + HackTricks |
+----------------------------+------------------------------+

^
|

+-----------------------------------------------------------+
| Layer 3: Autonomous Agent Pod (NetworkPolicy Isolated) |
| - BlackArch toolkit (2000+ tools) |
| - Command sandbox (whitelist + blacklist) |
| - Egress: Target + MCP + LLM + DNS only |
+----------------------------+------------------------------+

|
v

+-----------------------------------------------------------+
| Layer 4: Target System |
| - Intentionally vulnerable |
| - SSH (port 22) |
+-----------------------------------------------------------+

Figure 1: Four-layer autonomous red team architecture. Arrows indicate data flow during attack cycle.

3. Decide: Request attack plan from LLM with RAG context

4. Act: Execute sandboxed command against target

The agent runs in a BlackArch Linux container with access to 2,000+ security tools. A command
sandbox validates all executions against a tool whitelist and destructive pattern blacklist.

2.4 Layer 4: Target System

The target is an intentionally vulnerable system with weak credentials, SUID binaries, and sudo miscon-
figurations, isolated via NetworkPolicy to the agent’s egress allowlist.

3 Agent-Orchestrated Control

A key design decision is agent-orchestrated rather than LLM-orchestrated control flow. In LLM-orchestrated
systems, the model directly invokes tools via structured function calling APIs. In agent-orchestrated sys-
tems, the agent controls the loop while the LLM provides text responses that the agent parses.

3.1 Motivation

We discovered that abliterated models exhibit degraded performance with structured tool calling—a find-
ing consistent with broader evidence that abliteration degrades capabilities beyond mere safety-refusal
removal (Arditi et al., 2024; Farzulla, 2025b). The GCG attack literature (Zou et al., 2023) demonstrates
that safety alignment can be circumvented through adversarial suffixes, but abliteration takes a more
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aggressive approach by removing the refusal direction entirely from the model’s representation space,
with collateral effects on constrained generation. LM Studio’s function calling API produced grammar
stack errors during JSON generation:

{"error":"Unexpected empty
grammar stack after accepting
piece: {\""}

This appears related to weight modifications during the abliteration process affecting constrained
generation reliability.

3.2 Agent-Orchestrated Pattern

The agent implements explicit control flow:

while not objective_achieved:
knowledge = query_mcp_rag(obj)
plan = llm.generate(

prompt_with_knowledge)
commands = extract_commands(plan)
result = sandbox.execute(

commands[0])
if success(result):

break

Benefits include:

• Compatibility with abliterated models

• Full transparency into prompts and responses

• Easier debugging and logging

• Flexible command extraction patterns

3.3 Repetition Detection

LLMs can enter repetitive loops, executing the same failed command repeatedly. The agent tracks
command history and queries RAG for alternative techniques if the same tool appears three consecutive
times:

if is_repeating(command):
alt = query_rag(

objective + " alternative")
plan = llm.generate(

"Suggest DIFFERENT approach",
context=alt)

Testing showed this reduced stuck loops by approximately 80%.
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4 Safety Framework

Autonomous offensive agents require robust containment. Our framework implements defense-in-depth
across network, command, and resource layers.

4.1 NetworkPolicy Isolation

Kubernetes NetworkPolicy provides kernel-level enforcement of allowed traffic, not application-level
filtering. The agent’s egress policy permits only:

• Target system (specified IP, port 22)

• MCP RAG server (ClusterIP service)

• LLM inference endpoint (specified IP, port 1234)

• DNS (port 53)

All other traffic—including internet access, other pods, Kubernetes API, and LAN hosts—is blocked
by implicit deny. This is provably verifiable via policy inspection.

4.2 Command Sandbox

The sandbox implements multi-layer validation:

• Whitelist: 2,000+ BlackArch tools approved

• Blacklist: Destructive patterns blocked (e.g., rm -rf /, dd if=.*of=/dev/, mkfs)

• Logging: All commands recorded with timestamps

• Timeout: 30-second maximum execution

4.3 Resource Constraints

The agent pod enforces:

• 1 CPU maximum

• 1GB RAM maximum

• Non-root execution (UID 1000)

• Dropped capabilities

• RuntimeDefault seccomp profile

5 Preliminary Results

We present preliminary validation against intentionally vulnerable targets.
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5.1 SSH Compromise Scenario

Objective: Gain SSH access using weak credentials.
Execution:

1. Agent queries RAG: “SSH brute force weak password”

2. RAG returns Atomic Red Team T1110.001, HackTricks SSH guides

3. LLM generates hydra command with context

4. Agent extracts and executes: hydra -l victim -p password123 ssh://target

5. Success detected via exit code and output pattern

Performance:

• Total time: ∼90 seconds

• Commands executed: 1–3

• Success rate: 100% on vulnerable targets

5.2 Component Latency

Component Latency

MCP RAG query <100ms
LLM inference 5–15s
Command execution Variable

Total iteration 20–60s

Table 1: Component latency (14B model, consumer GPU)

6 Blue Team Agent Architecture

Phase 2 introduces an autonomous blue team agent that mirrors the red team’s OODA loop but operates
with defensive objectives and a distinct knowledge base. Vyas et al. (2025) survey the landscape of
autonomous cyber network defence and identify a persistent gap between offensive agent capabilities
and defensive automation—the blue team agent described here addresses this asymmetry directly. The
blue team agent implements a five-phase defensive methodology.

6.1 Five-Phase Defensive Methodology

The blue team agent executes a structured defense cycle:

1. Audit: Enumerate system state—running services, open ports, user accounts, SUID binaries, cron
jobs, file permissions, and installed packages

2. Detect: Identify anomalies and known vulnerability patterns by comparing audit results against
security baselines

3. Analyze: Query the MITRE D3FEND knowledge base via MCP to retrieve defensive techniques
mapped to detected threats

8



4. Remediate: Generate and apply security patches using the patch generation framework (Sec-
tion 7)

5. Harden: Apply proactive hardening measures—firewall rules, service configuration, access controls—
beyond immediate vulnerability remediation

6.2 DefenseSandbox

Analogous to the red team’s command sandbox, the blue team operates within a DefenseSandbox that
restricts execution to whitelisted defensive tools:

• Audit tools: auditd, lynis, aide

• Detection tools: rkhunter, chkrootkit, ossec

• Remediation tools: fail2ban, iptables, systemctl

• System utilities: chmod, chown, usermod, passwd

Destructive operations (e.g., rm -rf, disk writes, kernel module loading) are blacklisted. All defen-
sive actions are logged with timestamps for scoring and audit purposes.

6.3 Defensive Knowledge Base

The blue team agent queries a separate RAG knowledge base built from defensive security resources:

• MITRE D3FEND (MITRE, 2024b): Defensive technique taxonomy mapped to ATT&CK tech-
niques

• CIS Benchmarks: System hardening baselines

• Patch databases: Known vulnerability remediation patterns

This creates information asymmetry: the red team has offensive knowledge (GTFOBins, ATT&CK,
HackTricks) while the blue team has defensive knowledge (D3FEND, hardening guides, patch patterns).
Neither agent has access to the other’s knowledge base.

6.4 Infrastructure

The blue team agent runs in a dedicated Kubernetes namespace (blueteam) with its own:

• Container: Dockerfile with defensive security tools pre-installed

• NetworkPolicy: Egress limited to target system, MCP server, LLM endpoint, and DNS

• ResourceQuota: CPU and memory limits matching red team constraints

• Deployment manifests: Kubernetes YAML for pod, service, and network policy

A deployment script (deploy-blueteam.sh) automates namespace creation, image building, and
manifest application.

7 Patch Generation Framework

The patch generator implements a two-tier strategy for vulnerability remediation.
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7.1 Known-Pattern Matching

The first tier uses deterministic pattern matching for common vulnerability classes:

• SSH hardening: Disable root login, enforce key-only authentication, restrict allowed users

• SUID remediation: Remove unnecessary SUID bits, apply least-privilege permissions

• Sudo misconfiguration: Remove NOPASSWD entries, restrict sudo access to specific commands

• Cron job sanitization: Validate cron entries, remove unauthorized scheduled tasks

• File permissions: Fix world-writable files, correct ownership on sensitive files

Each pattern produces a structured patch containing the commands to apply, a validation check to
confirm effectiveness, and a rollback procedure.

7.2 LLM-Assisted Patch Generation

When no known pattern matches, the second tier queries the LLM with vulnerability context and defen-
sive knowledge from RAG:

if not known_pattern(vulnerability):
context = query_defend_rag(vuln)
patch = llm.generate(

"Generate remediation",
context=context)

validate_and_apply(patch)

7.3 Validation and Rollback

Every patch undergoes validation before being considered successful:

1. Pre-application: Record system state snapshot

2. Application: Execute patch commands within DefenseSandbox

3. Validation: Run verification check (e.g., confirm SSH config changed, verify SUID bit removed)

4. Rollback: If validation fails, automatically restore pre-patch state

This ensures defensive actions do not degrade system availability—a critical scoring dimension.

8 Competition Scoring Framework

The scoring engine evaluates red team vs. blue team performance across multiple weighted dimensions.

8.1 Scoring Dimensions

Red team scoring mirrors this with offensive dimensions: time-to-compromise, stealth (failed detection
avoidance), persistence, and lateral movement.
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Dimension Weight Measures

Vulnerability remediation 30% Patches applied
Service availability 25% Uptime maintained
Detection speed 20% Time to detect
Hardening effectiveness 15% Controls applied
Incident response 10% Response quality

Table 2: Blue team scoring dimensions and weights

8.2 Report Generation

The ReportGenerator produces competition results in three formats:

• Text: Human-readable summary with section headers and formatted tables

• JSON: Machine-parseable structured data for integration with CI/CD pipelines

• Markdown: Formatted reports suitable for documentation and GitHub rendering

Each report includes per-dimension scores, overall weighted scores, competition winner determina-
tion, and timeline of key events.

9 Dual-LLM Adversarial Competition

Phase 1 hypothesised that dual-LLM adversarial competition—separate red team and blue team agents
with asymmetric knowledge bases—may produce more realistic security testing than single-model ap-
proaches. This hypothesis draws on the broader adversarial co-evolution paradigm: Ge et al. (2023)
demonstrate that iterative red-blue LLM competition reduces safety violation rates by 84.7%, and Lan-
dolt et al. (2025) survey the growing literature on multi-agent reinforcement learning for cybersecurity,
where adversarial training produces more robust defensive policies than static rule-based approaches.
Phase 2 implements this hypothesis.

9.1 Information Asymmetry

Real adversarial dynamics involve information asymmetry: attackers and defenders have different knowl-
edge, capabilities, and objectives. Single-agent systems cannot capture this dynamic.

The implemented architecture enforces this asymmetry:

• Red agent: Offensive knowledge (GTFOBins, ATT&CK, HackTricks) via offensive RAG server

• Blue agent: Defensive knowledge (MITRE D3FEND, hardening guides, patch databases) via
defensive RAG server

• Separate objectives: Compromise vs. prevent/detect/remediate

• Separate sandboxes: Offensive tool whitelist vs. defensive tool whitelist

9.2 Competition Framework

Phase 2 implements the following competition components:

• Blue team agent with five-phase defensive methodology (Section 6)

• LLM-assisted patch generation with validation and rollback (Section 7)
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• Competition scoring across weighted dimensions (Section 8)

• Automated report generation in text, JSON, and Markdown formats

9.3 Scaling Vision

At enterprise scale, this methodology could enable:

• Automated vulnerability discovery in newly published packages

• Zero-day identification before public exploitation

• Shift from reactive to proactive security

10 Related Work

We situate this work within six intersecting literatures: LLM-based penetration testing, autonomous
red-teaming of AI systems, LLM agent architectures, adversarial robustness and safety alignment, multi-
agent cybersecurity simulation, and regulatory frameworks for autonomous offensive AI.

10.1 LLM-Based Penetration Testing

The application of large language models to penetration testing has progressed rapidly from interactive
assistance to fully autonomous execution. Deng et al. (2024) introduce PentestGPT, which uses GPT-4
as an interactive reasoning engine for penetration testing guidance—the operator remains in the loop,
selecting which suggestions to execute. Happe and Cito (2023) evaluate GPT-4 on capture-the-flag
(CTF) challenges and find that the model can solve simple challenges but struggles with multi-step
exploitation chains. These early systems established that LLMs possess relevant security knowledge but
left execution to human operators.

Subsequent work has moved toward full autonomy. Shen et al. (2024) propose PentestAgent, a
multi-agent system that decomposes penetration testing into reconnaissance, scanning, and exploitation
phases with RAG-augmented knowledge retrieval—architecturally the closest parallel to our red team
agent. Nakatani (2025) demonstrate RapidPen, a ReAct-style agent with RAG over exploit databases
that achieves shell access in 200–400 seconds at approximately $0.30–0.60 per run, providing a use-
ful cost-performance baseline for our own 90-second SSH compromise. Kong et al. (2025) introduce
VulnBot, which uses a penetration task graph to coordinate multiple specialised agents across recon-
naissance, scanning, and exploitation. Singer et al. (2025) present Incalmo for multi-host network
red-teaming, using LLMs for high-level planning with domain-specific task agents for execution—they
evaluate PentestGPT and CyberSecEval3 as baselines and find both insufficient for multi-host scenarios.
Mei et al. (2025) describe AutoPen, which combines RAG, chain-of-thought reasoning, and structured
output for autonomous penetration testing. Wang et al. (2025) introduce the Planner-Executor-Perceptor
(PEP) paradigm, which separates strategic planning from tactical execution using classical planning
algorithms alongside LLM reasoning.

Our framework differs from these systems in two respects. First, we pair the offensive agent with an
autonomous defensive agent under a competition scoring framework—most existing work focuses ex-
clusively on the offensive side. Second, we document the agent-orchestrated control pattern necessitated
by abliterated model limitations, a practical constraint that other systems using safety-aligned models
through commercial APIs do not encounter.
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10.2 Autonomous Red-Teaming of AI Systems

The term “red-teaming” in the AI safety literature refers to a distinct practice from cybersecurity red-
teaming: eliciting harmful, biased, or policy-violating outputs from language models. Ganguli et al.
(2022) provide the foundational treatment from Anthropic, establishing methods, scaling behaviours,
and lessons learned from human red-teaming of LLMs. Ahmad et al. (2025) describe OpenAI’s approach
to external red-teaming, including structured evaluation design and outcome reporting. Feffer et al.
(2024) critically examine whether AI red-teaming constitutes genuine security evaluation or “security
theatre,” arguing that the practice has been imported from cybersecurity without sufficient attention to
what it can and cannot establish about model safety.

Several systems have automated this process. Zhou et al. (2025) present AutoRedTeamer, a multi-
agent architecture with lifelong attack memory that achieves 20% higher attack success rates on Harm-
Bench than prior methods—their dual-agent structure (attack proposer plus red-teaming agent) parallels
our own dual-agent design, though they target LLM safety alignment rather than system-level vulnera-
bilities. Poomekum et al. (2026) introduce Chimera-RL, which uses hierarchical reinforcement learning
with mission-graph exploration for campaign-level vulnerability discovery, including forensic logging
and mitigation playbook generation. Xu et al. (2024) develop RedAgent, a context-aware autonomous
agent with self-reflecting memory that jailbreaks most black-box LLMs within five queries and dis-
covers 60 vulnerabilities in deployed GPT applications. Dawson et al. (2025) propose AIRTBench,
a benchmark of 70 CTF challenges for evaluating autonomous red-teaming capabilities—Claude 3.7
Sonnet leads at 61% completion, establishing a current ceiling for LLM-based autonomous security
performance.

Our work bridges these two senses of red-teaming: we use LLMs as autonomous agents that perform
cybersecurity red-teaming (system-level vulnerability discovery and exploitation), not AI safety red-
teaming (eliciting harmful model outputs). The dual-agent competitive architecture, however, draws on
insights from both traditions.

10.3 LLM Agent Architectures

The autonomous agent pattern we employ—interleaved reasoning and action with environmental feedback—
was formalised by Yao et al. (2023) as the ReAct paradigm. Chain-of-thought prompting (Wei et al.,
2022) provides the reasoning substrate: decomposing complex tasks into sequential steps that the model
can reason through before acting. The AutoGPT paradigm (Significant Gravitas, 2023) demonstrated
that LLMs could drive open-ended task automation loops, though with limited reliability on complex
multi-step objectives.

Retrieval-augmented generation (Lewis et al., 2020) addresses the knowledge limitation inherent in
parametric models by retrieving relevant documents at inference time. Our architecture uses RAG over
three offensive knowledge bases (GTFOBins, Atomic Red Team, HackTricks) for the red agent and
defensive resources (D3FEND, CIS Benchmarks, patch databases) for the blue agent—creating the in-
formation asymmetry that distinguishes our framework from single-knowledge-base systems. Microsoft
(2024) integrate RAG with security operations in a commercial product, though without autonomous
execution capabilities.

A key architectural contribution of our work is the distinction between agent-orchestrated and LLM-
orchestrated control flow. In LLM-orchestrated systems, the model directly invokes tools through struc-
tured function-calling APIs. In agent-orchestrated systems, the agent controls the execution loop while
the LLM provides text-based reasoning that the agent parses. We find that agent-orchestrated control is
necessary when working with abliterated models whose constrained-generation capabilities have been
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degraded—a practical constraint that has received limited attention in the agent architecture literature,
which largely assumes access to well-behaved commercial models.

10.4 Adversarial Robustness and Safety Alignment

Our use of abliterated models connects to the broader literature on adversarial attacks against safety-
aligned language models. Zou et al. (2023) introduce the Greedy Coordinate Gradient (GCG) attack,
which generates universal adversarial suffixes that transfer across models and elicit harmful outputs from
safety-aligned systems. This work established that safety alignment is circumventable through system-
atic optimisation, motivating alternative approaches to safety constraint removal. Arditi et al. (2024)
demonstrate that refusal behaviour in language models is mediated by a single direction in representa-
tion space, and that removing this direction (abliteration) produces models that comply with arbitrary
requests—including security-relevant ones. We use an abliterated Qwen 2.5 Coder 14B (Bartowski,
2024) for precisely this reason: security research requires models that do not refuse to discuss offensive
techniques.

Farzulla (2025b) investigate the downstream consequences of abliteration in detail, finding that ablit-
erated models exhibit genre mimicry—they reproduce the stylistic surface of harmful content without
preserving the ethical reasoning capabilities that safety-trained models possess. This finding directly
motivated our agent-orchestrated control pattern: if abliteration degrades structured output capabilities
alongside safety refusal, the agent must compensate by managing the control flow externally.

Meta’s CyberSecEval benchmark suite provides standardised evaluation of LLM cybersecurity risks
across three iterations: Bhatt et al. (2023) introduce the original benchmark covering insecure code gen-
eration and cyberattack compliance; Bhatt et al. (2024) extend it with prompt injection, code interpreter
abuse, and exploit generation; and Wan et al. (2024) add automated social engineering, scaling man-
ual offensive operations, and autonomous offensive operations. These benchmarks establish baseline
expectations for what LLMs can accomplish autonomously in security contexts and provide evaluation
methodology that future iterations of our framework should adopt.

10.5 Multi-Agent Cybersecurity Simulation

The framing of cybersecurity as adversarial competition between autonomous agents has a growing lit-
erature. Vyas et al. (2025) provide a comprehensive survey of autonomous cyber network defence, cov-
ering both offensive and defensive agent architectures plus the simulation environments in which they
operate—they propose criteria for evaluating autonomous defence algorithms that our scoring frame-
work partially addresses. Landolt et al. (2025) survey multi-agent reinforcement learning for cybersecu-
rity, covering AICA (Autonomous Intelligent Cyber-defence Agent) architectures and cyber gymnasium
environments designed for training adversarial policies.

Ge et al. (2023) demonstrate MART (Multi-round Automatic Red-Teaming), where an adversarial
LLM iteratively attacks a target LLM, reducing safety violation rates by 84.7% through the adversar-
ial training process—the closest published parallel to our dual-LLM competitive architecture, though
MART targets LLM safety alignment rather than system-level security. Our framework extends this
adversarial co-evolution concept to cybersecurity: the red and blue agents compete over system-level
vulnerabilities with asymmetric knowledge bases, and the competition scoring framework quantifies the
outcome across multiple weighted dimensions.

The information asymmetry in our architecture—separate offensive and defensive knowledge bases,
separate toolkits, separate objectives—reflects the structure of real adversarial engagements and con-
nects to the game-theoretic foundations of cyber defence, where attackers and defenders have different
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information sets, capabilities, and payoff structures. The Axiom of Consent framework (Farzulla, 2025a)
provides formal treatment of friction dynamics in precisely such multi-agent adversarial scenarios, in-
cluding MARL experiments that demonstrate how preference alignment and intensity affect coordination
outcomes under competing objectives.

10.6 Regulatory and Ethical Frameworks

Autonomous offensive AI systems operate in a rapidly evolving regulatory landscape. The NIST Ar-
tificial Intelligence Risk Management Framework (NIST, 2023) provides structured methodology for
identifying and managing AI risks, including adversarial use. The EU AI Act (European Union, 2024)
classifies AI systems by risk level, with autonomous offensive capabilities falling into categories that
require transparency obligations and human oversight. Longpre et al. (2024) propose legal and tech-
nical safe harbours for AI safety evaluation and red-teaming research, arguing that the dual-use nature
of offensive security research should not deter responsible investigation but should be conducted under
structured protections.

Our framework addresses these concerns through technical isolation (NetworkPolicy, sandboxing,
resource constraints), operational controls (authorised targets only, full audit logging), and architectural
separation (offensive and defensive agents constrained to whitelisted tool sets). However, we note that
technical measures alone are insufficient for responsible deployment—organisational policies, oversight
mechanisms, and legal clarity remain essential complements to the engineering safeguards described
here.

11 Discussion

11.1 Abliterated Models

A critical finding is that abliterated (uncensored) models are necessary for security research but exhibit
degraded structured output performance. Arditi et al. (2024) show that refusal is mediated by a sin-
gle representational direction, and removing it produces compliance with arbitrary requests—but the
abliteration process appears to have collateral effects on constrained generation that Zou et al. (2023)’s
adversarial suffix approach does not. The agent-orchestrated pattern provides a robust workaround, and
may actually be preferable for transparency and debugging. This finding is consistent with Farzulla
(2025b)’s observation that abliterated models reproduce harmful content’s surface form without pre-
serving the reasoning structure that enables reliable structured output.

11.2 Infrastructure Constraints

We encountered unexpected syscall restrictions: K3s containerd blocks socketpair(), breaking async
Python frameworks. Flask with synchronous workers proved more reliable than FastAPI/Uvicorn in
constrained environments. This suggests that simpler technology stacks have better compatibility in
restricted execution contexts.

11.3 Defensive Agent Design

Phase 2 revealed that defensive agents benefit from a more structured methodology than offensive agents.
The five-phase cycle (Audit, Detect, Analyze, Remediate, Harden) provides a deterministic scaffold that
reduces LLM hallucination risk—each phase has concrete, verifiable outputs. The two-tier patch gener-
ation strategy (known patterns first, LLM fallback second) similarly improves reliability by preferring
deterministic remediation over generative approaches.
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The DefenseSandbox proved essential: early testing without sandbox restrictions allowed the blue
team agent to execute commands outside its intended defensive scope. Whitelisting defensive tools
prevents scope creep while maintaining sufficient capability.

11.4 Scoring Challenges

Designing fair competition scoring required balancing multiple concerns. Service availability (25%
weight) prevents the blue team from “defending” by shutting down services. Detection speed (20%)
rewards proactive monitoring rather than post-compromise forensics. The weighting scheme remains
configurable for different competition scenarios.

11.5 Ethical Considerations

Autonomous offensive capabilities raise ethical concerns that the research community has begun to ad-
dress systematically. Feffer et al. (2024) argue that red-teaming practices imported from cybersecurity
into AI safety require careful examination of what they can and cannot establish. Longpre et al. (2024)
propose safe harbour protections for AI safety evaluation, recognising that responsible offensive re-
search requires institutional and legal frameworks alongside technical safeguards. The NIST AI Risk
Management Framework (NIST, 2023) and EU AI Act (European Union, 2024) provide regulatory con-
text for autonomous offensive systems, though neither fully addresses the dual-use challenges specific
to LLM-guided adversarial agents.

Our framework addresses these concerns through:

• Explicit isolation (NetworkPolicy, sandboxing) for both agents

• Authorised targets only

• Full audit logging of all offensive and defensive actions

• Research-focused scope

• Defensive agent restricted to whitelisted security tools

Responsible deployment requires additional controls beyond technical measures, including organisa-
tional policies, oversight mechanisms, and the kind of structured safe-harbour protections that Longpre
et al. (2024) advocate for the broader AI safety research community.

12 Future Work

With Phase 1 (red team) and Phase 2 (blue team) complete, the following directions remain.

12.1 Short-Term

• Multi-objective chaining (recon → exploit → privesc → persistence)

• Stealth metrics and detectability analysis

• Live competition execution with simultaneous red/blue agents

• Expanded defensive knowledge base coverage
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12.2 Mid-Term

• Reinforcement learning from competition outcomes (win/loss signals), drawing on the MARL
cyber defence literature surveyed by Landolt et al. (2025)

• Multi-agent collaboration (multiple red or blue agents coordinating), extending the multi-agent
penetration testing approaches of Kong et al. (2025) and Shen et al. (2024)

• Custom exploit generation, building on Fang et al. (2024a)’s demonstration that LLMs can au-
tonomously exploit real CVEs

• Adversarial training (red trains blue, GAN-like dynamics), following the MART paradigm of Ge
et al. (2023)

• Standardised evaluation against AIRTBench (Dawson et al., 2025) and CyberSecEval 3 (Wan et
al., 2024) benchmarks

12.3 Long-Term

• CTF automation with full attack chains

• Real CVE exploitation and automated patching

• Deployment across package ecosystems for continuous security monitoring

• Integration with the Chimera-RL (Poomekum et al., 2026) approach to hierarchical campaign-
level vulnerability discovery

13 Conclusion

This technical report presents a complete framework for autonomous adversarial security competition
using LLM-guided agents. Phase 1 established the red team infrastructure: a four-layer architecture
achieving autonomous SSH compromise in approximately 90 seconds. Phase 2 extends the framework
with a blue team agent, patch generation framework, and competition scoring engine.

Key contributions span both phases: the agent-orchestrated control pattern (necessary for abliterated
model compatibility), comprehensive safety framework (NetworkPolicy, sandboxing, resource limits),
five-phase defensive methodology with DefenseSandbox, two-tier patch generation with validation and
rollback, and a weighted competition scoring engine producing multi-format reports.

The dual-LLM adversarial competition hypothesis—that separate agents with asymmetric knowl-
edge bases produce more realistic security testing—is now implemented as a complete system with
Kubernetes deployment manifests, namespace isolation, and automated scoring. The framework pro-
vides infrastructure for studying adversarial dynamics computationally: how autonomous attackers and
defenders co-evolve strategies under information asymmetry.

Autonomous adversarial security competition offers potential for proactive vulnerability discovery
at scale. Responsible development requires balancing offensive and defensive capabilities with robust
containment and ethical oversight. Future work focuses on live competition execution, reinforcement
learning from outcomes, and scaling to enterprise environments.
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