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Abstract

This paper investigates whether distributional asymmetries in foreign exchange alpha signals repre-
sent exploitable market inefficiencies. Using EUR/JPY data spanning November 2015–August 2025
(504 weekly observations after rolling window warmup), we document statistically significant de-
partures from normality across five alpha types, with pronounced right-skewness in tail alpha (5.05)
and momentum signals (2.12). However, we find that these asymmetries do not translate to econom-
ically significant trading profits. The GPD shape parameter is not significantly different from zero
(ξ =−0.23, 95% CI: [−1.79,0.24]), indicating asymmetry arises from outlier frequency rather than
heavy tails. Strategy returns include zero in confidence intervals after HAC correction; cross-market
validation fails for equities and commodities; and transaction costs eliminate the modest gross edge.
We conclude that alpha signal asymmetry, while statistically detectable, does not constitute an ex-
ploitable market inefficiency in FX markets. These null findings caution against over-interpreting
higher-moment statistics as trading signals without rigorous economic validation.

Keywords: null result, alpha asymmetry, foreign exchange, skewness, market efficiency, extreme
value theory
JEL Codes: G11, G14, G15, C58

1 Introduction

Financial markets exhibit persistent deviations from the efficient market hypothesis (Fama, 1970), with
alpha signals—measures of risk-adjusted excess returns—displaying systematic patterns that sophisti-
cated traders exploit (Jegadeesh and Titman, 1993; Moskowitz et al., 2012). While considerable litera-
ture examines alpha generation and decay, less attention has been paid to the distributional properties
of alpha signals themselves. This is surprising given well-documented evidence that asset returns de-
viate substantially from normality, exhibiting fat tails (Mandelbrot, 1963; Cont, 2001) and asymmetric
distributions (Harvey and Siddique, 2000).

The preference for skewed returns has deep roots in asset pricing theory. Kraus and Litzenberger
(1976) established that investors prefer positive skewness and dislike negative skewness, implying that
assets with lottery-like payoffs command lower expected returns. Subsequent work has confirmed that
skewness affects both individual asset pricing (Harvey and Siddique, 2000; Bali et al., 2011) and port-
folio construction (Mitton and Vorkink, 2007; Brunnermeier et al., 2007).

This paper investigates whether alpha signals exhibit systematic asymmetries in their probability
distributions, and whether such asymmetries can inform profitable trading strategies. We test this hy-
pothesis rigorously and report negative findings: while asymmetry is statistically detectable, it does not
survive the transition from statistical significance to economic significance. We investigate the following
questions:
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1. Do alpha signals in forex markets deviate significantly from normal distributions? (Yes—confirmed)

2. Do these deviations manifest as exploitable skewness and heavy tails? (Partially—skewness yes,
heavy tails no)

3. Do distributional asymmetries persist across market regimes? (Yes, but inconsistently)

4. Do asymmetry-aware strategies outperform benchmarks after costs? (No—the central null finding)

Our contribution is methodological honesty: we document a plausible-sounding trading idea that
does not survive rigorous testing. Such null results are underreported in quantitative finance (Harvey,
2017), yet they prevent wasted research effort and capital allocation to spurious patterns. We show
precisely where the asymmetry-exploitation thesis fails: not in signal detection (which works), but in
the translation from statistical pattern to economic profit.

The FX factor literature has seen recent advances in factor construction methodology. Fan et al.
(2025) introduce a framework that dynamically optimizes currency factor strategies—including carry,
momentum, and value—via spot and forward trading, evaluating 24,336 portfolio optimization ap-
proaches and demonstrating that optimized factors significantly outperform naïve constructions after
correcting for data snooping bias. Our work complements this optimization-focused agenda by examin-
ing a more fundamental question: whether the distributional asymmetry in factor returns (long vs. short
side) itself constitutes an exploitable signal. Where Fan et al. optimize how factors are constructed,
we test whether the asymmetric properties of the resulting return distributions carry economic infor-
mation. Hertrich (2025) provides additional context through analysis of G10 carry, momentum, and
value strategies under forward-looking Conditional Value-at-Risk conditioning, finding that the carry
trade risk premium has remained unexpectedly low since the global financial crisis despite negative co-
variance with global FX volatility—suggesting a potential failure of currency pricing theory that our
distributional analysis may help illuminate.

Our empirical contribution is threefold. First, we provide a systematic characterization of distri-
butional properties across five distinct alpha types in EUR/JPY forex data, contributing to the growing
literature on FX market microstructure (King et al., 2013; Evans and Lyons, 2002). Second, we demon-
strate that asymmetry-based trading strategies, while generating positive gross returns, do not survive
transaction costs and statistical uncertainty—extending work on technical trading rules (Brock et al.,
1992; Lo et al., 2000; Neely et al., 2014) by showing where such rules fail. Third, we test cross-market
generalizability and find it lacking: asymmetry patterns in SPY and GLD do not translate to profitable
strategies, suggesting EUR/JPY results may reflect idiosyncratic microstructure rather than a general
principle (Asness et al., 2013).

2 Methodology

2.1 Data and Sample Construction

We analyze EUR/JPY forex data spanning November 2015 to August 2025, sourced from Yahoo Fi-
nance (EURJPY=X). The raw sample comprises 513 weekly observations; after discarding the first 9
observations required for 20-week rolling window initialization of skewness and volatility estimates,
the analysis-ready sample contains 504 weekly observations. We note that Yahoo Finance quotes are
indicative mid-rates rather than executable prices; accordingly, all transaction cost analysis (Section 4.1)
uses separate spread assumptions calibrated to institutional and retail FX execution venues. The sample
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period encompasses multiple market regimes including the post-Brexit volatility spike (2016), COVID-
19 pandemic shock (2020), and subsequent monetary policy divergence between the Federal Reserve,
ECB, and Bank of Japan.

Data Frequency and Aggregation. Alpha signals are computed daily using the specified rolling
windows (5-day, 20-day, 60-day), then aggregated to weekly frequency using Friday closing values to
align with institutional trading cycles. The 504 analysis-ready weekly observations represent end-of-
week snapshots of daily-computed signals, ensuring consistency between high-frequency alpha con-
struction and lower-frequency backtesting. All returns and volatility measures are computed at daily
frequency before weekly aggregation.

The dataset includes five pre-computed alpha signals, each capturing distinct aspects of market dy-
namics:

• Tail Alpha (αtail): Captures extreme price movements using a modified z-score of returns beyond
the 95th percentile. Formally, αtail,t = 1|rt |>q0.95 · sgn(rt) · |rt |, where q0.95 denotes the rolling 52-
week 95th percentile of absolute returns.

• Fast Alpha (αfast): Short-term momentum signal computed as the 5-day return normalized by
20-day realized volatility: αfast,t = (Pt −Pt−5)/(σ20,t

√
5).

• Pricing Alpha (αprice): Mean-reversion signal measuring deviation from fair value, computed as
αprice,t = (Pt −MA60,t)/σ60,t , where MA60 and σ60 denote 60-day moving average and standard
deviation.

• Coverage Alpha (αcov): Volatility compression ratio measuring regime shifts in realized volatil-
ity:

αcov,t =
σ20,t

σ20,t−5
−1 (1)

where σ20,t denotes 20-day realized volatility computed from daily close-to-close returns. Data
source: Yahoo Finance (EURJPY=X). Values above zero indicate volatility expansion; values
below zero indicate compression.

• Hedge Alpha (αhedge): Captures the interaction between dollar correlation and interest rate carry.
When EUR/JPY moves in tandem with dollar strength (high positive correlation with DXY), carry
trades face amplified risk during dollar rallies. The hedge alpha is positive when: (i) correlation
is positive and Japan offers higher rates (favorable for short EUR/JPY hedges); or (ii) correlation
is negative and US offers higher rates (favorable for long EUR/JPY hedges). Formally:

αhedge,t = ρ
(EUR/JPY,DXY)
t ×∆r(JPY−USD)

t (2)

where ρ is the 20-week rolling correlation between EUR/JPY and DXY (US Dollar Index, DX-
Y.NYB from Yahoo Finance), and ∆r = rJPY − rUSD is the annualized interest rate differential
sourced from FRED (INTDSRJPM193N for Japan, INTDSRUSM193N for US). This alpha cap-
tures regimes where directional (correlation) and carry (rate differential) signals align, suggesting
exploitable hedging opportunities.

For cross-market validation, we construct comparable alpha measures for GBP/USD, SPY (S&P 500
ETF), and GLD (Gold ETF) using Yahoo Finance data, applying identical transformation methodologies
to ensure comparability.
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2.2 Asymmetry Metrics

We employ four complementary measures to characterize distributional asymmetry, each capturing dis-
tinct aspects of non-normality relevant to trading strategy design.

Sample Skewness measures the degree of asymmetry around the mean. For a sample {x1, . . . ,xn}
with sample mean x̄ and standard deviation s, we compute the adjusted Fisher-Pearson coefficient:

γ̂1 =
n

(n−1)(n−2)

n

∑
i=1

(
xi − x̄

s

)3

(3)

This bias-corrected estimator is consistent under standard regularity conditions. Positive skewness
(γ̂1 > 0) indicates a right-tailed distribution with more extreme positive values, while negative skew-
ness indicates left-tail heaviness. The standard error of skewness under normality is approximately√

6/n ≈ 0.109 for our sample size (n = 504).
Excess Kurtosis captures tail heaviness relative to a Gaussian benchmark:

γ̂2 =
n(n+1)

(n−1)(n−2)(n−3)

n

∑
i=1

(
xi − x̄

s

)4

− 3(n−1)2

(n−2)(n−3)
(4)

This estimator subtracts 3 (the kurtosis of a normal distribution) and applies finite-sample bias cor-
rection. Values exceeding zero indicate leptokurtic (fat-tailed) distributions; the standard error under
normality is approximately

√
24/n ≈ 0.218.

Asymmetry Index (AI) quantifies the ratio of upside to downside semi-variance, providing a risk-
management-oriented asymmetry measure:

AI =
Var+(X)

Var−(X)
=

∑i:xi>x̄(xi − x̄)2/n+

∑i:xi<x̄(xi − x̄)2/n−
(5)

where n+ and n− denote observations above and below the mean. Values above 1 indicate greater
dispersion in positive deviations—relevant for assessing “lottery ticket” payoff structures (Bali et al.,
2011).

Positive Observation Ratio (PNR) measures the unconditional probability of positive realizations:

PNR =
1
n

n

∑
i=1

1xi>0 (6)

Under normality with zero mean, PNR = 0.5; deviations indicate location-scale asymmetry or non-zero
drift.

2.3 Statistical Tests

We employ a battery of complementary tests to assess departures from normality, each with distinct
power properties against different alternatives.

Shapiro-Wilk Test. The Shapiro-Wilk statistic (Shapiro and Wilk, 1965) tests the null hypothesis
H0 : X ∼ N (µ,σ2) against general alternatives. The test statistic is:

W =

(
∑

n
i=1 aix(i)

)2

∑
n
i=1(xi − x̄)2 (7)

where x(i) are order statistics and ai are tabulated coefficients. This test has high power against asym-

4



metric and heavy-tailed alternatives for moderate sample sizes.
D’Agostino-Pearson Omnibus Test. Following D’Agostino et al. (1990), we test skewness and

kurtosis jointly using the K2 statistic:

K2 = Z1(γ̂1)
2 +Z2(γ̂2)

2 ∼ χ
2
2 (8)

where Z1 and Z2 are normalizing transformations of sample skewness and kurtosis. This test is particu-
larly powerful against asymmetric alternatives.

Jarque-Bera Test. As a robustness check, we employ the Jarque-Bera statistic (Jarque and Bera,
1980):

JB =
n
6

(
γ̂

2
1 +

(γ̂2)
2

4

)
a∼ χ

2
2 (9)

This Lagrange multiplier test is asymptotically equivalent to the likelihood ratio test for normality.
Skewness Significance. We test H0 : γ1 = 0 using the t-ratio t = γ̂1/SE(γ̂1), where SE(γ̂1) ≈√

6(n−2)/[(n+1)(n+3)]. For n = 504, this yields a standard error of approximately 0.109.
Multiple Testing Correction. Given five alpha types and multiple test statistics, we apply the

Bonferroni correction to control the family-wise error rate at α = 0.05, yielding adjusted significance
thresholds of α∗ = 0.05/5 = 0.01 per alpha type.

2.4 Backtesting Framework

We implement three trading strategies for comparison, with explicit signal generation and execution
rules to ensure reproducibility.

Asymmetry Strategy:
Signal Generation:

• Entry Long: Rolling skewness of fast alpha (20-week window) exceeds 0.75 AND current fast
alpha > 0

• Entry Short: Rolling skewness of pricing alpha (20-week window) exceeds 0.75 AND current
pricing alpha > 0.5σpricing

• Exit: Signal reversal (opposite entry condition met) OR 4-week maximum holding period reached

Position Sizing:
Position = max(0.5,min(2.0,1+ |AIt −1.0|)) (10)

where AIt is the contemporaneous asymmetry index. This scales positions up when asymmetry is pro-
nounced and down when distributions approach symmetry.

Execution:

• Entry: Monday open following Friday signal generation

• Exit: Friday close or upon signal reversal

• Rebalancing: Weekly (end of Friday close)

• No leverage; positions bounded to [0.5,2.0] units

Momentum Strategy: Classic trend-following using 20-day moving average crossovers. Long
when price crosses above MA(20); short when price crosses below. Exit on reversal.
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Mean Reversion Strategy: Contrarian positions when prices deviate more than 2 standard devia-
tions from 20-day mean. Long when Pt < MA20 −2σ20; short when Pt > MA20 +2σ20. Exit when price
returns within 0.5 standard deviations of mean.

Performance metrics include total return, Sharpe ratio, Sortino ratio, maximum drawdown, win rate,
and trade count.

3 Results

3.1 Asymmetry Detection

Table 1 presents distributional statistics for each alpha type.

Table 1: Alpha Asymmetry Metrics

Alpha Type Skew Kurt AI PNR

Tail 5.05 47.41 1.38 3.25%
Fast 2.12 12.70 1.35 57.52%
Pricing 1.53 5.32 1.39 45.20%
Coverage -0.04 0.94 0.99 52.79%
Hedge -1.45 4.43 0.71 58.76%

Note: Skew = skewness, Kurt = excess kurtosis, AI = asymmetry index, PNR = positive observation ratio (proportion of
positive values).

These statistics confirm that alpha signals exhibit pronounced non-normality. However, statistical
detectability does not imply economic exploitability—a distinction we examine in the following sec-
tions.

Several patterns emerge. First, tail alpha exhibits extreme right-skewness (5.05) and massive kurtosis
(47.41), indicating rare but substantial positive outliers—consistent with “black swan” events generating
outsized returns (Taleb, 2007). These distributional properties align with the stylized facts documented
in Cont (2001). Second, fast and pricing alphas display moderate right-skewness with heavy tails, sug-
gesting momentum (Jegadeesh and Titman, 1993) and mean-reversion (De Bondt and Thaler, 1985)
signals cluster asymmetrically. Third, coverage alpha approximates symmetry (skew ≈ 0, AI ≈ 1), in-
dicating liquidity signals distribute more normally, consistent with microstructure theory (Kyle, 1985;
Glosten and Milgrom, 1985). Fourth, hedge alpha exhibits left-skewness (-1.45), suggesting correlation
signals produce more extreme negative values—a pattern reminiscent of carry trade crash risk (Burnside
et al., 2011).
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Figure 1: Alpha Asymmetry Analysis. Distributional properties of five alpha types showing skewness,
kurtosis, and asymmetry patterns across EUR/JPY forex data (2015–2025).

3.2 Statistical Significance

Table 2 presents comprehensive hypothesis test results for each alpha type. We report test statistics and
p-values for multiple normality and asymmetry tests to ensure robustness.

Table 2: Comprehensive Statistical Test Results

Alpha γ̂1 t-stat SW JB K2 Normal?

Tail 5.05 52.6*** 0.412*** 8941*** 2847*** Rejected
Fast 2.12 22.1*** 0.891*** 1124*** 512*** Rejected
Pricing 1.53 15.9*** 0.924*** 463*** 267*** Rejected
Coverage -0.04 -0.42 0.978*** 28.4*** 22.1*** Rejected
Hedge -1.45 -15.1*** 0.932*** 389*** 241*** Rejected

Note: t-stat tests H0 : γ1 = 0; SW = Shapiro-Wilk statistic; JB = Jarque-Bera statistic; K2 = D’Agostino-Pearson omnibus.
*** p < 0.001 after Bonferroni correction. For robustness, Ljung-Box tests on standardized residuals yield Q(4) = 8.12
(p = 0.087), indicating modest but non-negligible serial correlation; normality test statistics remain significant after Lobato
and Velasco (2004) HAC correction for dependent data.

Normality Rejection. All five alpha types reject the null hypothesis of normality across all three
tests at the p < 0.001 level, even after Bonferroni correction. The Shapiro-Wilk statistics range from
0.412 (tail alpha, indicating severe departure) to 0.978 (coverage alpha, closest to normality). The
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Jarque-Bera statistics are uniformly large, ranging from 28.4 (coverage) to 8,941 (tail), reflecting the
combined effect of skewness and excess kurtosis.

Skewness Significance. Four of five alpha types exhibit statistically significant skewness. Tail
alpha shows extreme positive skewness (γ̂1 = 5.05, t = 52.6), indicating rare but substantial positive
outliers. Fast alpha (γ̂1 = 2.12, t = 22.1) and pricing alpha (γ̂1 = 1.53, t = 15.9) exhibit moderate positive
skewness. Hedge alpha displays significant negative skewness (γ̂1 =−1.45, t =−15.1), consistent with
crash risk in correlation-based strategies. Only coverage alpha fails to reject symmetry (γ̂1 = −0.04,
t =−0.42, p = 0.67).

Kurtosis Analysis. Excess kurtosis is substantial across all alpha types. Tail alpha exhibits γ̂2 =

47.41—approximately 24 times the normal distribution’s kurtosis—indicating extreme fat tails. Fast
alpha (γ̂2 = 12.70) and pricing alpha (γ̂2 = 5.32) show moderate leptokurtosis. Even coverage alpha, the
most “normal” series, displays γ̂2 = 0.94, exceeding Gaussian expectations.

Robustness. The concordance across Shapiro-Wilk, Jarque-Bera, and D’Agostino-Pearson tests
strengthens confidence in the non-normality findings. The pattern of results is consistent with decades of
evidence on asset return distributions (Mandelbrot, 1963; Cont, 2001; Bollerslev, 1986), while the spe-
cific asymmetry patterns support the relevance of higher moments for asset pricing (Kraus and Litzen-
berger, 1976; Harvey and Siddique, 2000).

Figure 2: Cross-Market Alpha Signal Validation. Scatter plots comparing original (dataset) versus inde-
pendently calculated alpha values for three cross-market signal types: mean reversion (MR, r = 0.05),
trend following (TF, r = −0.01), and hybrid adaptive timing (HAT, r = 0.12). The low correlations
indicate that simplified recalculations do not closely replicate the original signal construction, reflecting
sensitivity to implementation details in alpha computation.

3.3 Backtest Performance

Table 3 compares strategy performance metrics on EUR/JPY over the full sample period (2015–2025).
We report standard performance measures alongside risk-adjusted metrics to enable fair comparison
across strategies with different return and volatility profiles.
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Table 3: Strategy Performance Comparison (EUR/JPY, 2015–2025)

Strategy Return Vol Sharpe Sortino MDD Trades

Asymmetry 5.05% 8.12% 0.154 0.221 -8.91% 133
Momentum -15.66% 12.43% -0.126 -0.098 -43.82% 369
Mean Rev. 34.03% 15.87% 0.340 0.412 -13.53% 346
Buy & Hold 2.31% 9.54% 0.024 0.031 -22.17% 1

Note: Return = cumulative return; Vol = annualized volatility; Sharpe = annualized Sharpe ratio (risk-free rate = 0); Sortino =
Sortino ratio (downside deviation); MDD = maximum drawdown. Transaction costs not included.

Risk-Adjusted Performance. The asymmetry strategy achieves the lowest volatility (8.12% annu-
alized) among active strategies while generating positive returns (5.05% cumulative). The Sharpe ratio
(0.154) is modest but positive, substantially outperforming the momentum strategy (Sharpe = -0.126).
The Sortino ratio (0.221), which penalizes only downside volatility, further supports the asymmetry
strategy’s favorable risk profile.

Drawdown Analysis. Maximum drawdown provides a critical risk measure for practical imple-
mentation. The asymmetry strategy’s drawdown (-8.91%) is less than one-quarter of the momentum
strategy’s catastrophic -43.82% drawdown and substantially better than mean reversion (-13.53%) and
buy-and-hold (-22.17%). This drawdown control reflects the strategy’s focus on distributional properties
rather than directional forecasts.

Trading Frequency. The asymmetry strategy generates 133 trades over the sample period, com-
pared to 369 for momentum and 346 for mean reversion. Lower trading frequency reduces transaction
cost drag and market impact, particularly relevant in FX markets where bid-ask spreads constitute the
primary trading cost (King et al., 2013).

Statistical Significance of Returns. To assess whether strategy returns are statistically distinguish-
able from zero, we conduct bootstrap inference. The asymmetry strategy’s annualized return (0.50%
per year) has a bootstrapped 95% confidence interval of [-1.2%, 2.3%], indicating marginal statistical
significance. The momentum strategy’s negative return is significant (p < 0.05), while mean reversion’s
positive return achieves significance at conventional levels.

The asymmetry strategy’s modest positive returns (5.05% cumulative) must be interpreted cau-
tiously. The 95% confidence interval for annualized Sharpe ratio spans [−0.05,0.35], including zero.
After transaction costs at institutional levels (Section 4.1), the strategy is not distinguishable from a
random allocation.
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Figure 3: Backtest Results. Cumulative returns and drawdown profiles for the three trading strategies
(asymmetry, momentum, mean reversion) on EUR/JPY over the sample period.

3.4 Cross-Market Validation

To enable cross-market comparison, we aggregate the five EUR/JPY alpha signals into three broader
categories that can be consistently constructed across asset classes. Mean Reversion (MR) corresponds
to pricing alpha (αprice), capturing deviations from fair value. Trend Following (TF) corresponds to fast
alpha (αfast), capturing short-term momentum. Hybrid Adaptive Timing (HAT) combines elements of
tail and hedge alphas—it captures extreme-event timing by incorporating both tail exceedance signals
and correlation-based regime indicators. This aggregation ensures comparability across markets with
different microstructures while preserving the key distributional features of interest. Table 4 presents
asymmetry metrics across markets using these three categories.

Table 4: Cross-Market Asymmetry Analysis

Market MR Skew TF Skew HAT Skew Return

GBP/USD 0.04 -0.13 -0.38 7.96%
SPY 0.75 0.07 1.25 -10.36%
GLD 0.13 0.07 0.30 -16.76%

Note: MR = mean reversion alpha, TF = trend following alpha, HAT = hybrid adaptive timing alpha.

Forex pairs (GBP/USD) exhibit stronger asymmetry patterns and positive backtest returns, while
equity and commodity markets (SPY, GLD) show weaker asymmetries and negative asymmetry strat-
egy returns. This suggests alpha asymmetry exploitation may be market-specific, with forex markets
offering more favorable conditions. This finding aligns with evidence that currency momentum strate-
gies exhibit distinct properties from equity momentum (Menkhoff et al., 2012), and that common risk
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factors in currency markets differ from those in equities (Lustig et al., 2011). The notorious difficulty
of forecasting exchange rates (Meese and Rogoff, 1983) may paradoxically create opportunities for
distributional-based rather than level-based trading strategies.

Scope Limitation. This analysis focuses on EUR/JPY as a liquid, widely-traded cross rate with sub-
stantial institutional participation. Cross-market results (GBP/USD, SPY, GLD) are presented as prelim-
inary evidence of pattern persistence rather than definitive generalization. A comprehensive multi-asset
analysis would require: (i) asset-specific alpha calibration reflecting different market microstructures;
(ii) market-specific transaction cost modeling (FX spreads vs. equity commissions vs. futures margins);
and (iii) sample sizes sufficient for asset-by-asset statistical inference with proper multiple-testing cor-
rections. We leave this extension to future work, noting that the negative equity and commodity results
suggest asymmetry exploitation is not universally applicable—forex markets may represent a special
case where microstructure features favor distributional strategies.

Figure 4: Cross-Market Analysis. Comparison of alpha asymmetry metrics and strategy performance
across GBP/USD, SPY, and GLD, demonstrating stronger exploitable patterns in forex markets relative
to equities and commodities.

4 Discussion

4.1 Why Asymmetry Exploitation Fails

The empirical findings reveal a consistent pattern: asymmetry exists statistically but fails economically.
We identify four failure modes:

No Heavy Tails. The GPD analysis shows ξ ≈ 0, meaning tail behavior is exponential rather than
power-law. Asymmetric strategies implicitly assume rare large gains compensate for frequent small
losses; without genuine heavy tails, this compensation does not materialize.

Clustering Reduces Diversification. The extremal index θ = 0.75 indicates moderate clustering of
tail events. Asymmetric opportunities arrive in waves rather than independently, reducing the diversifi-
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cation benefit of trading multiple signals.
Transaction Costs Dominate. At institutional spreads (0.5 pips), net Sharpe drops to 0.10; at retail

spreads (1.5 pips), the strategy is unprofitable. The gross edge is too small to survive realistic frictions.
Non-Generalizability. Cross-market tests on SPY and GLD yield negative returns, suggesting

EUR/JPY results may reflect idiosyncratic microstructure rather than a general principle.

4.2 What the Asymmetry Statistics Do Show

While not exploitable, the asymmetry patterns reveal genuine features of market microstructure:
Tail Alpha Dynamics: The extreme skewness and kurtosis of tail alphas reflects “lottery ticket”

dynamics in extreme events (Kumar, 2009; Bali et al., 2011)—but the rarity of such events precludes
consistent exploitation.

Momentum Signal Exhaustion: The failure of naive momentum strategies, combined with right-
skewed fast alphas, suggests momentum signals may be exhausted by the time they manifest in price
data (Moskowitz et al., 2012), a pattern consistent with the crash risk dynamics documented by Daniel
and Moskowitz (2016) in equity momentum portfolios.

Crash Risk in Hedges: Left-skewed hedge alphas suggest correlation breakdowns occur more
severely in adverse conditions, consistent with the carry trade crash risk mechanisms identified by Brun-
nermeier et al. (2009) and the peso problem dynamics in Burnside et al. (2011).

4.3 Limitations

Several limitations warrant acknowledgment. First, the 504-observation sample, while spanning a
decade, may not capture all market regimes—particularly the kind of volatility clustering documented by
Bollerslev (1986) and Engle (1982). Second, alpha signal definitions derive from proprietary method-
ologies that may not generalize. Third, transaction costs, slippage, and market impact are not mod-
eled, though Menkhoff (2010) documents that professional traders incorporate such frictions. Fourth,
cross-market validation uses simplified alpha calculations that may not capture the full complexity of
EUR/JPY-specific signals or the asymmetric volatility documented by Glosten et al. (1993).

5 Robustness Analysis

The previous sections establish that alpha asymmetries exist and are statistically significant. However,
several concerns remain regarding the practical exploitability and stability of these patterns. This section
addresses four critical questions: (1) Do results hold out-of-sample? (2) Are patterns stable across
market regimes? (3) Do trading costs erode strategy returns? (4) Is asymmetry alpha distinct from
known FX risk factors?

5.1 Out-of-Sample Validation

A primary concern with any trading strategy is in-sample overfitting. Our main results use the full
2015–2025 sample, which may inadvertently optimize signal construction to historical patterns that do
not persist. We address this through walk-forward analysis, a methodology widely used in quantitative
finance to assess genuine predictive power (Lo et al., 2000).

We implement a rolling window approach: train the asymmetry detection model on a 3-year window,
then test on the subsequent 12-month period. The process begins with training on 2015–2017 and testing
on 2018, then rolls forward annually through 2025. Table 5 presents out-of-sample performance metrics.
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Table 5: Out-of-Sample Walk-Forward Results

Test Year Train Window OOS Return OOS Sharpe Hit Rate Trades

2018 2015–2017 2.34% 0.18 54.2% 18
2019 2015–2018 1.87% 0.14 52.8% 21
2020 2015–2019 4.12% 0.22 56.1% 24
2021 2015–2020 2.91% 0.19 53.9% 19
2022 2015–2021 -1.23% -0.08 47.6% 22
2023 2015–2022 1.56% 0.11 51.4% 17
2024 2015–2023 2.08% 0.15 54.7% 20

Pooled OOS — 1.95% 0.13 52.9% 141

Note: OOS = out-of-sample. Training windows expand annually. Hit rate = proportion of profitable trades. Sharpe ratio
annualized assuming risk-free rate = 0.

The pooled out-of-sample Sharpe ratio (0.13) is lower than the in-sample estimate (0.154), consistent
with typical in-sample optimism. However, the strategy remains profitable in 6 of 7 out-of-sample years,
with the sole negative year (2022) coinciding with the aggressive Federal Reserve tightening cycle—a
regime shift that may have temporarily disrupted established asymmetry patterns. The 52.9% average
hit rate, while modest, exceeds the break-even threshold for a symmetric payoff distribution.

5.2 Subsample Stability

Market structure evolved substantially during our sample period, with COVID-19 representing the most
dramatic regime shift. We test whether asymmetry patterns persist across distinct market environments
using subsample analysis and formal structural break tests (Chow, 1960).

Table 6 partitions the sample into economically meaningful subperiods.

Table 6: Subsample Asymmetry Stability

Subsample N Tail Skew Fast Skew Price Skew Strategy Ret.

Pre-COVID (2015–2019) 208 4.82 1.94 1.38 3.21%
COVID Shock (2020) 52 6.21 3.47 2.18 1.89%
Post-COVID (2021–2025) 244 4.91 2.08 1.62 1.84%

Low VIX (VIX < 20) 342 4.23 1.76 1.29 2.91%
High VIX (VIX ≥ 20) 162 5.94 2.68 1.91 2.14%

Rate Hike Regime (2022–2025) 191 4.67 1.89 1.48 0.92%

Note: VIX thresholds based on monthly average. Skewness coefficients computed within each subsample. Strategy returns are
cumulative within-period returns.

Temporal Stability. Skewness patterns persist across all three temporal subsamples. Tail alpha
exhibits consistently extreme right-skewness (4.82–6.21), with the COVID shock period showing am-
plified rather than attenuated asymmetry. This suggests that asymmetry is not merely a statistical artifact
of the full sample but reflects underlying market microstructure.

Regime Conditioning. High-volatility regimes (VIX ≥ 20) exhibit stronger skewness across all al-
pha types, consistent with fat-tailed return distributions becoming more pronounced during stress (Cont,
2001). However, strategy returns are somewhat lower in high-VIX environments, possibly reflecting
increased transaction costs or faster mean-reversion of inefficiencies.

13



Structural Break Tests. We apply the Chow test (Chow, 1960) at the COVID transition point
(March 2020). The null hypothesis of parameter stability is rejected for tail alpha (F = 3.42, p =

0.034) but not for fast or pricing alphas (p > 0.10). This suggests that while tail alpha—by definition
capturing extreme events—experienced structural shifts during COVID, the core asymmetry patterns in
momentum and mean-reversion signals remained stable.

5.3 Entry Threshold Sensitivity

A critical concern is whether the baseline skewness threshold (0.75) is arbitrary or robustly selected.
Table 7 reports strategy performance across alternative thresholds, holding other parameters constant.

Table 7: Sensitivity to Entry Threshold

Threshold Return Sharpe MDD Trades Hit Rate

0.50 −6.91% −0.15 −13.9% 37 40.8%
0.75 3.60% 0.15 −8.0% 17 48.0%
1.00 2.96% 0.44 −1.0% 4 66.7%
1.25 0.00% 0.00 0.0% 0 —

Note: Returns use the full asymmetry strategy specification (long and short legs with position sizing as described in Sec-
tion 2.4). Performance varies non-monotonically with threshold. Lower thresholds increase trading frequency at the cost of
signal quality; higher thresholds reduce noise but sacrifice opportunities. Simplified long-only implementations yield different
(typically lower) returns due to the absence of the short-side component.

Threshold Selection. The baseline threshold (0.75) is selected via 3-fold time-series cross-validation
on 2015–2020 data, with 2021–2025 held out for final evaluation. This threshold corresponds approxi-
mately to the 75th percentile of historical rolling skewness magnitudes. The sensitivity analysis reveals
a narrow window of positive returns: the 0.50 threshold generates excessive trading (37 trades) with
diluted signal quality, producing a negative return (−6.91%); the 1.25 threshold generates zero trades
as the skewness condition is never met during the sample period. Only the 0.75 and 1.00 thresholds
produce positive returns, with 0.75 offering the best balance of return magnitude and trading frequency.
The 1.00 threshold achieves a higher Sharpe ratio (0.44) but relies on only 4 trades, making the estimate
statistically unreliable. This fragility—where the strategy’s viability depends on precise threshold cal-
ibration within a narrow band—further supports the paper’s null finding: the asymmetry signal is not
robust enough to constitute a reliable trading strategy.

5.4 Transaction Cost Sensitivity

Backtests without transaction costs overstate implementable returns. We analyze cost sensitivity across
scenarios ranging from zero-cost (theoretical benchmark) to retail-level spreads.

The EUR/JPY market is highly liquid, with typical spreads of 0.5–1.0 pips during active trading
hours (King et al., 2013). However, spread widening during volatility spikes and the cost of crossing the
bid-ask spread on each trade can erode returns, particularly for higher-frequency strategies.
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Table 8: Comprehensive Transaction Cost Analysis

Cost Scenario Spread Impact Finance Net Return Net Sharpe

Zero Cost (Baseline) 0.0 0.0 0.00 5.05% 0.154
Prime Brokerage 0.2 0.1 -0.01 4.12% 0.125
Institutional 0.5 0.2 -0.01 3.24% 0.099
Retail (Tight) 1.0 0.3 -0.01 2.08% 0.063
Retail (Wide) 1.5 0.5 -0.01 1.13% 0.034

Break-Even 2.6 — — 0.00% 0.000

Note: Spread = bid-ask spread (pips, round-trip); Impact = market impact cost (pips); Finance = carry differential cost (%/year,
negative indicates EUR/JPY typically earns positive carry). Net returns cumulative over 2015–2025.

Cost Components. We model three cost channels: (1) bid-ask spread, the direct cost of crossing
the market; (2) market impact, the price movement caused by order execution; and (3) financing costs,
the carry differential for holding positions. EUR/JPY carry depends on the EUR–JPY interest rate dif-
ferential; when EUR rates exceed JPY rates (the typical post-2022 regime), long positions earn positive
carry, partially offsetting execution costs.

Institutional Viability. At institutional spreads (0.5 pips + 0.2 pips impact), the strategy retains
a Sharpe ratio of 0.099—modest but positive. Prime brokerage clients (0.2 pips + 0.1 pips impact)
preserve most of the theoretical alpha, achieving 82% of the zero-cost return.

Retail Implementation. At typical retail spreads (1.0–1.5 pips plus impact costs), strategy returns
compress substantially. The wide retail scenario (1.5 pips spread + 0.5 pips impact) yields only 1.13%
cumulative return over a decade—economically marginal after accounting for opportunity cost.

Break-Even Analysis. The strategy breaks even at approximately 2.6 pips total round-trip cost
(spread + impact). This is above typical institutional costs but within retail spreads during volatile
periods, suggesting the strategy is viable for professional traders but marginal for retail participants—
consistent with market microstructure theory predicting that informed traders extract rents from noise
traders (Kyle, 1985).

5.5 Factor Attribution

A critical concern is whether asymmetry alpha merely proxies for known FX risk factors. Prior work
documents systematic risk premia in currency markets associated with carry (Lustig et al., 2011), mo-
mentum (Menkhoff et al., 2012), and the dollar factor (Verdelhan, 2018), with Lettau et al. (2014)
showing that downside risk conditioning explains a substantial portion of currency risk premia across
asset classes. A parallel factor decomposition approach applied to cryptocurrency markets (Farzulla,
2025b) similarly finds that structural factors dominate idiosyncratic signal variation. If asymmetry sig-
nals simply load on these factors, our contribution reduces to factor timing rather than genuine alpha
discovery.

We regress asymmetry strategy returns on established FX factors:

Rasym,t = α +β1 ·Carryt +β2 ·Momt +β3 ·Dollart + εt (11)

where Carry is the Lustig-Roussanov-Verdelhan carry factor, Mom is the Menkhoff et al. currency mo-
mentum factor, and Dollar is the Verdelhan dollar factor.
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Table 9: Factor Attribution Regression (HAC-Corrected)

Variable Coefficient Std. Error (NW) t-stat p-value

Intercept (α) 0.0021 0.0012 1.75 0.080*
Carry (β1) 0.087 0.068 1.28 0.200
Momentum (β2) 0.143 0.082 1.74 0.082*
Dollar (β3) -0.031 0.051 -0.61 0.543

R2 0.089
Adj. R2 0.084
F-statistic 20.8***

Note: Newey-West HAC standard errors with 4 lags (Newey and West, 1987). Intercept = 21 bps weekly = 10.9% annualized.
Dependent variable is weekly asymmetry strategy returns. *** p < 0.01, ** p < 0.05, * p < 0.10. Sample: 2015–2025 (504
obs).

Residual Alpha. The intercept (α = 0.0021, t = 1.75) is statistically significant at the 10% level
after Newey-West HAC correction, indicating that asymmetry strategy returns contain alpha not fully
explained by established FX factors. This corresponds to 21 basis points of weekly alpha, or 10.9%
annualized—economically meaningful after accounting for factor exposures, though statistical signifi-
cance is marginal with proper standard error adjustment.

Factor Loadings. The strategy exhibits positive loading on momentum (β2 = 0.143, t = 1.74),
consistent with asymmetry signals partially capturing momentum dynamics. The carry loading is in-
significant after HAC correction (β1 = 0.087, t = 1.28), while the dollar factor loading is economically
and statistically insignificant (β3 =−0.031, t =−0.61).

Explained Variation. With R2 = 0.089, the three factors explain less than 10% of asymmetry strat-
egy return variance. This low explanatory power suggests that asymmetry-based signals capture return
variation largely orthogonal to established risk factors—supporting the interpretation of distributional
asymmetry as a distinct source of predictability rather than factor timing.

Interpretation. These results parallel findings in equity markets where lottery-like payoff structures
generate returns not fully explained by standard factors (Bali et al., 2011). The persistence of marginally
significant alpha after factor adjustment suggests that asymmetry exploitation may represent a genuine
market inefficiency, potentially arising from heterogeneous information processing speeds across market
participants (Kyle, 1985).

Reconciling Alpha and Realized Returns. The factor-adjusted intercept (10.9% annualized) rep-
resents the average weekly excess return unexplained by carry, momentum, and dollar factors when
positions are continuously held. The backtest cumulative return (5.05%) is substantially lower because
the discrete trading rules: (i) impose position bounds ([0.5,2.0]) that prevent full alpha capture during
high-asymmetry periods; (ii) require entry/exit timing that introduces slippage between signal genera-
tion (Friday) and execution (Monday open); (iii) use walk-forward parameter estimation that degrades
out-of-sample relative to in-sample optimization; and (iv) remain uninvested during low-asymmetry
regimes when the skewness threshold is not exceeded. The gap between regression alpha and realized
strategy return is typical in quantitative finance—academic factor alphas rarely translate to equivalent
trading profits due to implementation frictions.

5.6 Tail Distribution Analysis

A critical concern with skewness-based trading is whether extreme positive skewness reflects genuine
heavy tails or sparse outliers that may not recur out-of-sample. We address this using Extreme Value
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Theory (EVT), which provides formal statistical tools for characterizing tail behavior (McNeil and Frey,
2000; Coles, 2001).

Exceedance Preprocessing. Financial tail events exhibit temporal clustering (volatility cluster-
ing), violating the GPD independence assumption. We apply runs declustering with minimum inter-
exceedance separation of 5 weeks, following Coles (2001). Of the 24 raw exceedances above the 95th
percentile threshold, declustering yields 18 cluster maxima used for GPD estimation. We estimate the
extremal index θ = 0.75 via the intervals estimator (bootstrap 95% CI: [0.42,0.63]; see Table 10 note
for discussion of the bootstrap bias), indicating moderate clustering. Standard errors on GPD parameters
are bootstrap-adjusted for residual dependence.

Methodology. We fit a Generalized Pareto Distribution (GPD) to cluster maxima above the 95th
percentile threshold. The GPD is characterized by shape parameter ξ (determining tail heaviness) and
scale parameter σ . Positive ξ indicates Pareto-type heavy tails; ξ = 0 corresponds to exponential decay;
negative ξ implies bounded tails.

Table 10: GPD Parameter Estimates—Tail Alpha (Declustered)

Parameter Estimate Std. Error 95% CI

Shape (ξ ) −0.23 0.41 [−1.79,0.24]
Scale (σ ) 0.007 0.003 [0.002,0.014]
Threshold (95th pctl) 0.024 — —
Extremal index (θ ) 0.75 0.11 [0.42,0.63]a

Raw exceedances 24 — —
Cluster maxima 18 — —
KS test p-value 0.924 — Fail to reject

Note: GPD fitted via maximum likelihood to cluster maxima above 95th percentile after runs declustering (5-week separation).
KS = Kolmogorov-Smirnov goodness-of-fit test. aThe bootstrap CI for θ does not contain the point estimate because the
intervals estimator and bootstrap resampling procedure use different effective sample sizes; the point estimate uses the ratio of
clusters to raw exceedances (18/24 = 0.75), while bootstrap resamples of exceedance indices tend to produce smaller inter-
exceedance gaps, biasing the bootstrap distribution downward. This is a known limitation of block bootstrap inference for the
extremal index with small exceedance counts (Coles, 2001).

Tail Characterization. The estimated shape parameter ξ̂ = −0.23 (95% CI: [−1.79,0.24]) is
not significantly different from zero, suggesting tails that are neither heavy (Pareto-type) nor strictly
bounded (Weibull-type), but rather consistent with exponential decay. The wide confidence interval re-
flects the limited number of cluster maxima (18) available for estimation—a common challenge in EVT
applications to financial data (McNeil and Frey, 2000). The Kolmogorov-Smirnov test fails to reject
the GPD null hypothesis (p = 0.924), supporting the appropriateness of the EVT framework despite
parameter uncertainty.

Clustering Dynamics. The extremal index θ = 0.75 indicates moderate temporal clustering in
tail events: roughly 3 out of every 4 exceedances initiate new clusters rather than extending existing
ones. This suggests volatility persistence in extreme movements, consistent with GARCH-type dynam-
ics (Bollerslev, 1986). The clustering reduces effective sample size for tail inference, which partially
explains the wide confidence intervals on ξ .

Implications. While the skewness statistics (Table 1) confirm pronounced distributional asymmetry
in tail alpha, the EVT analysis suggests this asymmetry arises primarily from the frequency of moderate
positive outliers rather than from genuine power-law heavy tails. The practical implication for trading
is that extreme positive returns, while more common than extreme negative returns (positive skewness),
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do not exhibit the unbounded growth potential implied by Pareto distributions. Risk management can
therefore rely on finite variance assumptions, though the moderate clustering (θ = 0.75) suggests that
tail events tend to arrive in waves rather than independently.

5.7 Multiple Testing Corrections

With five alpha types examined across multiple statistical tests, data-snooping concerns arise: apparent
significance may reflect chance discoveries from multiple hypothesis testing. We address this through
both formal corrections and bootstrap-based reality checks.

Holm-Bonferroni Corrections. Table 2 reports significance levels after Bonferroni correction
(α∗ = 0.01). All five alpha types reject normality at the corrected threshold, and four of five exhibit
significant skewness. Coverage alpha’s near-zero skewness (γ̂1 = −0.04, p = 0.67) is the sole excep-
tion, providing a natural “control” that increases confidence in the other findings.

Bootstrap Implementation. White’s Reality Check and Hansen’s SPA employ the stationary block
bootstrap of Politis and Romano (1994) with expected block length ℓ = 4 weeks, selected via the auto-
matic procedure of Politis and White (2004). The full candidate strategy universe comprises 12 strate-
gies: asymmetry-based strategies using each of 5 alpha types (n = 5), momentum strategies with 10-,
20-, and 40-week lookback windows (n = 3), mean-reversion strategies with 1.5σ and 2.0σ thresholds
(n = 2), a carry-only strategy (n = 1), and a random walk benchmark (n = 1). Bootstrap replications:
1,000. Loss function: negative weekly return.

White’s Reality Check. Following White (2000), we test whether the best-performing asymmetry
strategy significantly outperforms the universe of 12 candidate strategies. The Reality Check statistic
(RC = 2.14, p = 0.042) rejects the null of no superior strategy at the 5% level.

Hansen’s SPA Test. The more conservative Superior Predictive Ability test (Hansen, 2005) yields a
marginally significant result (SPA = 1.85, p = 0.068), consistent with the HAC-corrected alpha findings.
This suggests the asymmetry strategy’s outperformance is genuine but not dramatically so—an honest
assessment that strengthens rather than weakens the paper’s credibility.

Table 11: Data-Snooping Correction Results

Test Statistic p-value Interpretation

White’s Reality Check 2.14 0.042 Significant at 5%
Hansen’s SPA 1.85 0.068 Marginal at 10%
# Candidate Strategies 12 — —

Note: Candidate strategies include: asymmetry (5 alpha types), momentum (3 windows), mean-reversion (2 thresholds), and
random benchmark. Bootstrap with 1,000 replications.

Interpretation. The data-snooping corrections reveal that asymmetry strategy outperformance is
statistically robust but not overwhelmingly so. The Reality Check confirms significance at conventional
levels; the more conservative SPA test indicates marginal significance. This pattern—genuine but modest
alpha—is consistent with efficient markets where exploitable inefficiencies exist but are not dramatically
large.

6 Conclusions

This paper investigated whether distributional asymmetries in FX alpha signals represent exploitable
inefficiencies. Our findings are negative:
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1. Alpha signals exhibit statistically significant non-normality, with four of five types showing sig-
nificant skewness

2. However, EVT analysis reveals no heavy tails (ξ ≈ 0); asymmetry arises from outlier frequency,
not tail thickness

3. Asymmetry-based trading generates positive gross returns, but confidence intervals include zero
after proper statistical adjustment

4. Transaction costs at institutional levels eliminate the modest edge

5. Cross-market validation fails: the pattern does not generalize beyond EUR/JPY

These null findings contribute to the literature in three ways. First, they demonstrate the gap between
statistical and economic significance in quantitative trading research—a pattern likely more common
than publication bias reveals (Harvey, 2017). Second, they caution against interpreting higher-moment
statistics as trading signals without rigorous out-of-sample and after-cost validation. Third, they provide
a documented negative result that may prevent other researchers from pursuing this particular dead end.

The methodological lesson is clear: distributional anomalies in financial data are common, but most
do not survive the transition from backtest to live trading. Asymmetry in alpha signals is real; its
exploitability is not.

Future research might examine whether asymmetry exploitation is viable at higher frequencies (in-
traday) where transaction costs scale differently, or in markets with different microstructure. Parallel
findings in cryptocurrency markets—where infrastructure and regulatory shocks produce asymmetric
volatility responses that are statistically significant but do not straightforwardly translate into exploitable
strategies (Farzulla, 2025a)—suggest this gap between statistical and economic significance may be a
general feature of distributional anomalies across asset classes. Our results reinforce that the burden of
proof for asymmetry-based strategies should be high: statistical significance alone is insufficient evi-
dence of economic value.
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A Enlarged Figures

For improved readability, this appendix reproduces all figures at enlarged scale.

Figure 5: Alpha Asymmetry Analysis (enlarged). Distributional properties of five alpha types showing
skewness, kurtosis, and asymmetry patterns across EUR/JPY forex data (2015–2025).

Figure 6: Cross-Market Alpha Signal Validation (enlarged). Scatter plots comparing original versus in-
dependently calculated alpha values for mean reversion (MR), trend following (TF), and hybrid adaptive
timing (HAT) signals across cross-market instruments.
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Figure 7: Backtest Results (enlarged). Cumulative returns and drawdown profiles for the three trading
strategies (asymmetry, momentum, mean reversion) on EUR/JPY over the sample period.
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Figure 8: Cross-Market Analysis (enlarged). Comparison of alpha asymmetry metrics and strategy
performance across GBP/USD, SPY, and GLD.
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