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Abstract
Cryptocurrency markets have grown to represent over $3 trillion in capitalization, yet no
unified index exists to monitor the systemic risks arising from the interconnection between
decentralized finance (DeFi) protocols and traditional financial institutions. This paper in-
troduces the Aggregated Systemic Risk Index (ASRI), a composite measure comprising four
weighted sub-indices: Stablecoin Concentration Risk (30%), DeFi Liquidity Risk (25%),
Contagion Risk (25%), and Regulatory Opacity Risk (20%). We derive theoretical founda-
tions for each component, specify quantitative formulas incorporating data from DeFi Llama,
Federal Reserve FRED, and on-chain analytics, and validate the framework against histori-
cal crisis events including the Terra/Luna collapse (May 2022), the Celsius/3AC contagion
(June 2022), the FTX bankruptcy (November 2022), and the SVB banking crisis (March
2023). Empirical Results: Event study analysis detects statistically significant abnormal
signals for all four crises (t-statistics 5.47–32.64, all p < 0.01), though threshold-based oper-
ational detection identifies three of four events (Celsius/3AC, FTX, SVB) with an average
lead time of 30 days. The Terra/Luna miss reflects a documented limitation of market-
based indicators for algorithmic stablecoin risk. Walk-forward validation with expanding
training windows detects all four crises out-of-sample (4/4, average 18-day lead time), con-
firming that detection performance is not an artifact of look-ahead bias—notably including
Terra/Luna, which the walk-forward procedure detects despite the in-sample threshold miss.
Stationarity tests confirm all sub-indices are stationary (ADF p < 0.01). A three-regime
Hidden Markov Model identifies distinct Low Risk, Moderate, and Elevated states with
regime persistence exceeding 97%. The framework passes structural stability tests (Chow
p = 0.993). Benchmarking against the Diebold-Yilmaz (2012) connectedness index shows
equivalent detection rates (75%) with higher precision (33.5% vs. 22.4%). Out-of-sample
specificity testing on 2024–2025 data confirms zero false positives, including correct identi-
fication of the February 2025 Bybit hack ($1.5B, the largest exchange theft in history) as
non-systemic due to absence of contagion channels. The ASRI framework addresses a criti-
cal gap in existing risk monitoring by capturing DeFi-specific vulnerabilities—composability
risk, flash loan exposure, and tokenized real-world asset (RWA) linkages—that traditional
systemic risk measures such as SRISK and CoVaR cannot accommodate.

Keywords: systemic risk, cryptocurrency, decentralized finance, stablecoin stability, con-
tagion risk, DeFi-TradFi interconnection, risk monitoring, event study, regime detection
JEL Codes: G01 (Financial Crises), G15 (International Financial Markets), G23 (Non-
bank Financial Institutions)

1

https://dissensus.ai
https://systems.ac/3/DAI-2509
https://dissensus.ai
mailto:murad@dissensus.ai
https://orcid.org/0009-0002-7164-8704


Contents

1 Introduction 6

2 Literature Review 7
2.1 Traditional Systemic Risk Measures . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Cryptocurrency Market Risk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 Crisis Episode Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.4 DeFi-Specific Risks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.5 Stablecoin Risk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.6 Methodological Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.7 Existing Crypto Risk Indices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3 ASRI Framework 10
3.1 Conceptual Foundation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.2 Axiomatic Foundation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.3 Weight Selection Justification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.4 Stablecoin Concentration Risk (30%) . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.5 DeFi Liquidity Risk (25%) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.6 Contagion Risk (25%) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.7 Regulatory Opacity Risk (20%) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.8 Aggregate ASRI Calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4 Data and Implementation 17
4.1 Data Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.2 Data Quality Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.3 Technical Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

5 Empirical Validation 19
5.1 Crisis Taxonomy and Operational Definitions . . . . . . . . . . . . . . . . . . . . 19

5.1.1 Operational Crisis Definition . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.1.2 Crisis Typology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.1.3 Detection versus Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . 20

5.2 Data and Sample . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.3 Stationarity Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.4 Event Study Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5.4.1 Event Study Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.4.2 Event Study Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.4.3 Bootstrap Confidence Intervals . . . . . . . . . . . . . . . . . . . . . . . . 27
5.4.4 False Positive Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.4.5 ROC and Precision-Recall Curves . . . . . . . . . . . . . . . . . . . . . . 29

5.5 Weight Derivation: Empirical vs. Theoretical . . . . . . . . . . . . . . . . . . . . 30
5.5.1 Objective Weight Derivation Comparison . . . . . . . . . . . . . . . . . . 31
5.5.2 Collinearity Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.5.3 Granger Causality Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5.6 Regime Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2



5.7 Robustness Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.8 Component Importance Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.8.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.8.2 Ablation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.8.3 Interpretation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.9 Sensitivity Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.9.1 Weight Perturbation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.9.2 Threshold Sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.9.3 Window Length Sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.10 Hold-One-Out Cross-Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.11 Aggregation Method Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.12 Comparison with Connectedness Measures . . . . . . . . . . . . . . . . . . . . . . 46

5.12.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.12.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.13 Pseudo-Real-Time Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.13.1 Publication Lag Methodology . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.13.2 Lag-Simulated Detection Results . . . . . . . . . . . . . . . . . . . . . . . 51
5.13.3 Implications for Real-Time Deployment . . . . . . . . . . . . . . . . . . . 52

5.14 Walk-Forward Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.14.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.14.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.14.3 Interpretation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.15 Out-of-Sample Specificity Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.15.1 2024 Stability Period . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.15.2 The Bybit Hack (February 2025) . . . . . . . . . . . . . . . . . . . . . . . 55
5.15.3 Why Bybit Was Not Systemic . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.15.4 Specificity Interpretation . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.16 Validation Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

6 Discussion 57
6.1 Theoretical Implications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
6.2 Practical Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
6.3 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

7 Conclusion 60

A Detailed Component Specifications 68
A.1 Stablecoin Concentration Risk (SCR) . . . . . . . . . . . . . . . . . . . . . . . . 68

A.1.1 TVL Ratio (TVLt) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
A.1.2 Treasury Stress (Treasuryt) . . . . . . . . . . . . . . . . . . . . . . . . . . 68
A.1.3 Concentration HHI (HHIt) . . . . . . . . . . . . . . . . . . . . . . . . . . 69
A.1.4 Peg Volatility (Volt) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
A.1.5 SCR Aggregation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
A.1.6 Algorithmic Stablecoin Risk Extension (v2.1) . . . . . . . . . . . . . . . . 69

A.2 DeFi Liquidity Risk (DLR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3



A.2.1 Protocol Concentration (Conct) . . . . . . . . . . . . . . . . . . . . . . . . 71
A.2.2 TVL Volatility (TVLVolt) . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
A.2.3 Smart Contract Risk (SCt) . . . . . . . . . . . . . . . . . . . . . . . . . . 71
A.2.4 Flash Loan Proxy (Flasht) . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
A.2.5 Leverage Change (Levt) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
A.2.6 DLR Aggregation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

A.3 Contagion Risk (CR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
A.3.1 RWA Growth (RWAt) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
A.3.2 Bank Exposure (Bankt) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
A.3.3 TradFi Linkage (Linkt) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
A.3.4 Correlation (Corrt) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
A.3.5 Bridge Risk (Bridget) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
A.3.6 CR Aggregation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

A.4 Regulatory Opacity Risk (OR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
A.4.1 Unregulated Exposure (Unregt) . . . . . . . . . . . . . . . . . . . . . . . . 74
A.4.2 Multi-Issuer Risk (Multit) . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
A.4.3 Custody Concentration (Custt) . . . . . . . . . . . . . . . . . . . . . . . . 75
A.4.4 Regulatory Sentiment (Sentt) . . . . . . . . . . . . . . . . . . . . . . . . . 75
A.4.5 Transparency Score (Transt) . . . . . . . . . . . . . . . . . . . . . . . . . 76
A.4.6 OR Aggregation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

A.5 Aggregate ASRI Calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
A.6 Data Quality and Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

A.6.1 Data Availability Tiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
A.6.2 Missing Data Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
A.6.3 Proxy Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
A.6.4 Future Data Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

B API Documentation Summary 78

C Sub-Index Calculation Code 78

D Historical Crisis Event Details 79

E Sample Market Assessment (December 2024) 79

F Event Study Protocol Specification 80
F.1 Pre-Registration and Event Selection . . . . . . . . . . . . . . . . . . . . . . . . . 80

F.1.1 Event Identification Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . 80
F.1.2 Pre-Specified Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

F.2 Window Selection Justification . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
F.2.1 Estimation Window: [−90, −31] . . . . . . . . . . . . . . . . . . . . . . . 80
F.2.2 Event Window: [−30, +10] . . . . . . . . . . . . . . . . . . . . . . . . . . 81

F.3 Normal Model Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
F.3.1 Model Selection Rationale . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
F.3.2 Variance Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

F.4 Multiple Testing Correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4



F.5 Window Independence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
F.6 Placebo Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

F.6.1 Placebo Date Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
F.6.2 Placebo Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

F.7 Lead Time Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
F.8 Sensitivity to Specification Choices . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5



1 Introduction

The cryptocurrency market has evolved from a niche technological experiment into a multi-
trillion dollar asset class with growing interconnections to traditional finance. As of December
2025, the total cryptocurrency market capitalization exceeds $3 trillion, with stablecoins alone
representing over $140 billion in circulation (DeFi Llama, 2025). This growth has been ac-
companied by a series of cascading failures that revealed systemic vulnerabilities previously
unrecognized: the Terra/Luna collapse eliminated $40 billion in value within 72 hours; the
subsequent Celsius and Three Arrows Capital failures triggered margin calls across central-
ized exchanges; and the FTX bankruptcy demonstrated how opaque counterparty relationships
could propagate losses across the entire ecosystem.

Despite this systemic importance, no unified risk index exists to monitor the intercon-
nection between decentralized finance (DeFi) protocols and traditional financial institutions.
Existing measures either focus exclusively on cryptocurrency price volatility (Liu and Tsyvin-
ski, 2021), apply traditional banking metrics that miss DeFi-specific dynamics (Brownlees and
Engle, 2017), or provide sentiment-based indicators without quantitative grounding (Alterna-
tive.me, 2022).

This paper introduces the Aggregated Systemic Risk Index (ASRI), a composite measure
designed to capture the distinctive risk channels that arise from DeFi-TradFi interconnection.
The index comprises four weighted sub-indices:

1. Stablecoin Concentration Risk (30%): Measures reserve composition, peg stability,
and Treasury exposure across major stablecoins

2. DeFi Liquidity Risk (25%): Captures protocol concentration, leverage dynamics, and
smart contract vulnerability

3. Contagion Risk (25%): Quantifies TradFi linkage intensity, tokenized RWA growth,
and cross-market correlation shifts

4. Regulatory Opacity Risk (20%): Assesses transparency scores, regulatory arbitrage
metrics, and compliance infrastructure

The ASRI framework addresses three critical gaps in existing risk monitoring:
First, composability risk. DeFi protocols interact through smart contract calls that create

dependency chains invisible to external observers. When one protocol fails, composable inte-
grations can transmit losses instantaneously across the ecosystem—a dynamic that traditional
contagion models, designed for bilateral counterparty relationships, cannot capture.

Second, stablecoin-Treasury linkages. Major stablecoins now hold significant Treasury bill
positions, creating a direct transmission channel between US monetary policy and DeFi liquidity
conditions. Rate hikes that increase Treasury yields simultaneously reduce stablecoin reserve
valuations and incentivize capital rotation out of yield-bearing DeFi positions.

Third, regulatory arbitrage dynamics. The fragmented regulatory landscape creates opacity
about counterparty risk exposures, custody arrangements, and reserve attestation reliability.
Traditional banking metrics assume regulatory disclosure requirements that do not exist for
offshore or unregulated platforms.
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The urgency of dedicated crypto risk monitoring is underscored by recent TVP-VAR ev-
idence from Malik et al. (2025), who identify a structural break in Q3 2020 after which the
cryptocurrency market shifted from net receiver to net transmitter of financial risk spillovers
to traditional markets. Their finding that crypto is no longer a “digital diversifier” but an
active source of systemic contagion validates ASRI’s core premise: the DeFi-TradFi boundary
now requires continuous monitoring because shocks originating in crypto markets pose credible
threats to broader financial stability.

This paper proceeds as follows. Section 2 reviews the literature on systemic risk measure-
ment, cryptocurrency market dynamics, and existing crypto risk indices. Section 3 develops
the ASRI framework, specifying the theoretical foundation and quantitative formulas for each
sub-index. Section 4 describes data sources and implementation architecture. Section 5 presents
empirical validation against historical crisis events, including event study analysis, regime de-
tection, robustness tests, and out-of-sample specificity testing. Section 6 discusses theoretical
and practical implications. Section 7 concludes.

2 Literature Review

2.1 Traditional Systemic Risk Measures

The 2008 financial crisis catalyzed extensive research on systemic risk measurement. Adrian and
Brunnermeier (2016) introduced Conditional Value-at-Risk (CoVaR), measuring the VaR of the
financial system conditional on an institution being in distress. Acharya et al. (2017) developed
SRISK, estimating the expected capital shortfall of a financial institution during a systemic
crisis. Brownlees and Engle (2017) extended this framework with LRMES (Long-Run Marginal
Expected Shortfall), capturing an institution’s contribution to aggregate capital shortfall.

These measures share a common architecture: they model systemic risk as arising from
bilateral exposures between regulated financial institutions with observable balance sheets and
regulatory capital requirements. This architecture is fundamentally unsuited to DeFi, where:

• Protocols are not institutions with capital requirements

• Exposures are embedded in smart contract code rather than disclosed counterparty rela-
tionships

• “Failure” may manifest as liquidity drainage rather than insolvency

• Contagion propagates through token price collapses and oracle manipulation rather than
credit defaults

2.2 Cryptocurrency Market Risk

Research on cryptocurrency-specific risk has focused primarily on volatility dynamics and mar-
ket microstructure. Aste (2019) establishes a foundational connection between emotional dy-
namics and economic structure in cryptocurrency markets, demonstrating that market structure
emerges from the interplay of sentiment-driven trading and network topology—a perspective
that informs ASRI’s integration of sentiment-adjacent indicators with structural risk channels.
Liu and Tsyvinski (2021) identify three common factors driving cryptocurrency returns: mar-
ket (aggregate crypto exposure), size, and momentum. Makarov and Schoar (2020) document
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arbitrage frictions across exchanges that allow price dislocations to persist, creating opportu-
nities for informed traders and risks for liquidity providers. Farzulla (2025a) demonstrate that
infrastructure disruptions generate 5.7× larger volatility shocks than regulatory events, sug-
gesting that technical vulnerabilities represent a more severe systemic risk channel than policy
uncertainty.

Griffin and Shams (2020) provide evidence that Tether issuance patterns correlate with
Bitcoin price movements, raising questions about stablecoin reserve integrity. This finding has
implications for systemic risk: if stablecoin issuance is not fully collateralized, DeFi liquidity
pools dependent on stablecoin inflows may be vulnerable to sudden redemption pressures.

2.3 Crisis Episode Analysis

The cryptocurrency crises of 2022–2023 generated substantial empirical scholarship validating
theoretical concerns about systemic fragility. Liu et al. (2022) provide the definitive analysis of
the Terra/Luna collapse, documenting how algorithmic stablecoin mechanics created a reflexive
depegging spiral that eliminated $40 billion in value within 72 hours. Ma et al. (2025) extend
this analysis to demonstrate that stablecoin run dynamics exhibit centralization in arbitrage
activity: during stress, redemption becomes concentrated among sophisticated actors, creating
adverse selection that accelerates depegging.

The FTX collapse of November 2022 has received detailed independent analysis. Vidal-
Tomás et al. (2023) trace FTX’s downfall to the prior Terra/Luna ecosystem collapse, which
triggered a liquidity crisis that exposed FTX’s reliance on leveraged positions in its native
FTT token and opaque intercompany transfers with Alameda Research. Their on-chain anal-
ysis demonstrates how centralised exchange fragility—masked by token self-valuation and in-
adequate reserve transparency—can trigger cascading failures across the broader ecosystem.
This independent corroboration of the FTX contagion pathway provides external validation for
ASRI’s event study results, where the FTX collapse produced the highest recorded index value
(84.7) and the largest absolute increase from baseline of any validation event.

The March 2023 Silicon Valley Bank crisis demonstrated bidirectional contagion between
traditional and decentralized finance. Diop et al. (2024) document the USDC depeg following
SVB’s collapse—the first major case of TradFi stress propagating into DeFi through stablecoin
reserve exposure. Gross and Senner (2026) model fire sale scenarios under systemic stable-
coin stress, while Eichengreen et al. (2025) develop a framework for quantifying devaluation
risk across stablecoin designs. Vidal-Tomás and Aste (2025) examine the evolving dynamic
relationship between cryptocurrency and traditional financial markets, finding evidence of in-
creasing integration over time—a trend that strengthens the case for monitoring DeFi-TradFi
interconnection as a systemic risk channel. More broadly, Aufiero et al. (2025) provide a sys-
tematic mapping of microscopic and systemic risk transmission channels between TradFi and
DeFi, formalizing the “crosstagion” pathways through which instability propagates across the
conventional-decentralized boundary.

2.4 DeFi-Specific Risks

The academic literature on DeFi risk is nascent but growing rapidly. Gudgeon et al. (2020)
provide a systematization of DeFi protocol architectures, identifying liquidation cascades as a
primary risk channel. Perez et al. (2021) analyze liquidation events across lending protocols,

8



finding that liquidator competition can exacerbate price volatility during stress periods.
Werner et al. (2022) present a systematization of knowledge on DeFi covering lending,

decentralized exchanges, and derivatives. They identify composability—the ability of protocols
to permissionlessly interact through smart contract calls—as both a source of innovation and
systemic vulnerability. When protocols share liquidity pools or collateral mechanisms, failures
can propagate faster than human intervention can respond. Recent work on whitepaper-market
alignment (Farzulla, 2025b) suggests that stated protocol objectives may diverge from realized
market behavior, creating additional opacity in risk assessment.

Recent work has deepened understanding of DeFi-specific systemic channels. Bartoletti et al.
(2022) formalize composability risk through MEV (Maximal Extractable Value), demonstrat-
ing that protocol interactions create value extraction opportunities that destabilize liquidity
during stress. Darlin et al. (2022) analyze debt-financed collateral structures, identifying lever-
age amplification mechanisms. Cross-chain bridge infrastructure represents acute vulnerability;
Notland et al. (2024) systematize knowledge on bridge exploits, analyzing 60 bridges and 34
attacks (2021–2023) to identify 13 architectural components linked to 8 vulnerability types.
Zhang et al. (2025) propose a correlation-based fragility indicator for detecting dangerous pro-
tocol synchronization.

2.5 Stablecoin Risk

Stablecoins occupy a critical position in DeFi infrastructure, serving as the primary medium
of exchange and store of value across protocols. Lyons and Viswanath-Natraj (2022) analyze
stablecoin run dynamics, finding that algorithmic stablecoins are particularly vulnerable to
reflexive depegging spirals. The Terra/Luna collapse of May 2022 validated this theoretical
concern empirically.

Gorton and Zhang (2022) frame stablecoins through the lens of 19th-century “wildcat bank-
ing,” where private currency issuance without adequate regulatory oversight led to periodic
banking panics. They argue that stablecoin reserves require the same transparency and ex-
amination that bank reserves receive—a standard that most major stablecoins currently fail to
meet.

De Blasis et al. (2022) conduct comparative performance analysis across the Terra, Celsius,
and FTX episodes, finding that fiat-collateralized stablecoins exhibit more resilience than algo-
rithmic designs. Antonakakis et al. (2020) introduce the TVP-VAR connectedness framework
that enables measurement of time-varying spillover dynamics without arbitrary rolling-window
selection—a methodological advance particularly relevant for cryptocurrency markets where
structural breaks occur frequently.

2.6 Methodological Considerations

Two recent findings warrant consideration. First, Rapos and Fountas (2025) challenge the
assumption of strong Bitcoin-equity market contagion, finding spillovers remain limited even
during stress episodes. This finding does not invalidate contagion measurement but suggests
correlation-based measures should be interpreted cautiously: elevated correlation may reflect
common shocks rather than causal transmission. Second, Zhu (2024) present evidence via global
game modeling that more precise private signals can paradoxically increase run probability when
fundamentals are strong—potentially explaining why opaque stablecoins have exhibited stability
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despite theoretical expectations. This presents genuine tension for opacity measurement; future
specifications should distinguish strategic opacity from information completeness.

2.7 Existing Crypto Risk Indices

Several commercial indices attempt to quantify cryptocurrency market risk:
Fear & Greed Index (Alternative.me, 2022): Aggregates sentiment indicators (social

media, volatility, dominance, trends) into a 0–100 scale. Limitation: purely sentiment-based
with no fundamental risk component.

Crypto Climate Index (CCI): Combines on-chain metrics with market data. Limitation:
focuses on individual asset health rather than systemic interconnection.

Glassnode Risk Assessment: Provides sophisticated on-chain analytics for Bitcoin and
Ethereum. Limitation: asset-specific rather than ecosystem-wide; minimal DeFi coverage.

In the academic literature, Guo et al. (2024) propose the Cryptocurrency General Risk
Index (CGRI), which tracks and sources cryptocurrency risk through a composite of market,
sentiment, and macro indicators. While CGRI provides a useful aggregate risk signal for the
cryptocurrency asset class as a whole, it operates at the market-sentiment level without decom-
posing risk into the structural transmission channels—stablecoin reserve linkages, DeFi com-
posability dependencies, tokenized RWA exposures, and regulatory opacity—that characterize
DeFi-TradFi interconnection. ASRI differs by targeting these specific contagion pathways, en-
abling identification of which structural channel is generating stress rather than only whether
aggregate risk is elevated.

Most recently, Shah (2025) constructs a Unified DeFi Risk Index (DeFi-RI) integrating
credit, liquidity, and governance risk into a composite scoring model. Shah’s decomposition
captures governance fragility and protocol-level credit exposure that ASRI currently under-
weights, but does not address the cross-boundary transmission channels—stablecoin-Treasury
linkages, TradFi contagion pathways, and regulatory opacity—that constitute ASRI’s primary
focus. The two indices are thus complementary rather than competing: DeFi-RI monitors
intra-DeFi protocol health while ASRI monitors the DeFi-TradFi boundary where systemic risk
materializes.

None of these indices systematically captures the DeFi-TradFi interconnection dynamics that
ASRI is designed to monitor: stablecoin reserve composition, composable protocol dependencies,
tokenized RWA linkages, or regulatory arbitrage exposure.

3 ASRI Framework

3.1 Conceptual Foundation

The ASRI framework rests on three theoretical principles:
Principle 1: Interconnection Creates Systemic Risk. Following Battiston et al.

(2012), systemic risk arises not from the failure of individual nodes but from the propagation of
distress through network connections. Aste (2025) provides the theoretical and methodological
foundations for information filtering networks—sparse graph representations that extract sta-
tistically significant dependency structures from high-dimensional data—offering a principled
approach to identifying which connections carry genuine risk information versus noise. In DeFi,
these connections manifest through shared collateral pools, composable protocol integrations,
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Stablecoin Risk
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DeFi Liquidity Risk
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Contagion Risk
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Low < 30 | Moderate 30–50 | Elevated 50–70 | High ≥ 70

Figure 1: ASRI Framework Architecture: Four weighted sub-indices aggregate into a normalized
composite risk measure with defined alert thresholds.

and token price correlations.
Principle 2: Risk Transmission Requires Channels. We identify four primary chan-

nels through which DeFi stress can propagate to traditional finance (and vice versa): stablecoin
reserve linkages, tokenized RWA exposures, crypto-equity correlations, and regulatory enforce-
ment actions. Each channel corresponds to an ASRI sub-index.

Principle 3: Opacity Amplifies Risk. Systemic risk is exacerbated when counterparties
cannot accurately assess exposures. The prevalence of unaudited reserves, undisclosed custody
arrangements, and regulatory arbitrage structures in crypto markets justifies a dedicated opacity
sub-index.

Figure 1 illustrates the ASRI architecture, showing how the four sub-indices aggregate into
the composite risk measure.

3.2 Axiomatic Foundation

We establish the formal properties that any coherent systemic risk index must satisfy, demon-
strating that ASRI adheres to these axioms. Our axiomatic framework draws on the coherent
risk measure literature (Artzner et al., 1999) while extending it to the specific requirements of
cryptocurrency market monitoring, where the absence of central counterparties and the preva-
lence of cross-venue arbitrage necessitate distinct aggregation properties.

Definition 3.1 (Systemic Risk Index). Let S = {S1, . . . , Sn} denote a set of sub-indices mea-
suring distinct risk dimensions. A systemic risk index is a mapping ρ : S → [0, 100] that
aggregates component risks into a scalar measure of system-wide vulnerability.

For ASRI, we have S = {SCR, DLR, CR, OR} with the aggregation function:

ASRI(S) =
4∑

i=1
wiSi, where

4∑
i=1

wi = 1 and wi > 0 ∀i (1)

We now state and verify five axioms that characterize well-behaved systemic risk indices.

Axiom 3.1 (Monotonicity). For any sub-index Sj ∈ S, if S′
j > Sj while S′

i = Si for all i ̸= j,
then ρ(S ′) > ρ(S).

Proof. Since wj > 0 and the aggregation is linear:

ASRI(S ′) − ASRI(S) = wj(S′
j − Sj) > 0 (2)
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The strict positivity of weights ensures that deterioration in any risk dimension is reflected
in the aggregate index. This property is essential for regulatory monitoring, as it guarantees
that localized stress cannot be masked by stability elsewhere—a concern raised by Adrian and
Brunnermeier (2016) in their critique of institution-level VaR measures.

Axiom 3.2 (Boundedness). The index satisfies ρ(S) ∈ [0, 100] for all feasible states S.

Proof. Each sub-index is constructed such that Si ∈ [0, 100] by design (see Appendix A). Given
convex weights summing to unity:

0 =
4∑

i=1
wi · 0 ≤ ASRI(S) ≤

4∑
i=1

wi · 100 = 100 (3)

Boundedness facilitates interpretability and cross-temporal comparison, addressing the scaling
criticisms leveled at unbounded measures such as raw CoVaR (Adrian and Brunnermeier, 2016).

Axiom 3.3 (Decomposability). For any realization of ASRI, there exists a unique attribution
{c1, . . . , cn} such that

∑n
i=1 ci = ASRI(S) and ci represents the contribution of sub-index Si.

Proof. The linear structure immediately yields the efficiency-consistent additive decomposition
ci = wiSi, satisfying:

4∑
i=1

ci =
4∑

i=1
wiSi = ASRI(S) (4)

This decomposition is unique and satisfies the efficiency axiom of cooperative game theory.
Decomposability enables regulators to identify which risk channel—spillover, liquidity, concen-
tration, or operational—drives aggregate stress, facilitating targeted intervention. This property
aligns with the “risk contribution” framework of Acharya et al. (2017) for measuring systemic
expected shortfall.

Axiom 3.4 (Aggregation Neutrality). Linear aggregation preserves ordinal rankings: if SA and
SB represent two market states with SA

i ≥ SB
i for all i and strict inequality for at least one j,

then ρ(SA) > ρ(SB).

Proof. Under the stated conditions:

ASRI(SA) − ASRI(SB) =
4∑

i=1
wi(SA

i − SB
i ) ≥ wj(SA

j − SB
j ) > 0 (5)

Aggregation neutrality ensures that Pareto-dominated risk states are correctly ranked, pre-
venting the pathological reversals that can arise with nonlinear aggregation schemes (Battiston
et al., 2012). This property is particularly relevant for cryptocurrency markets, where rapid
regime shifts demand consistent ordinal comparisons across time.

Axiom 3.5 (Concentration Sensitivity). Let HHIt denote the Herfindahl-Hirschman Index of
market concentration at time t. The index satisfies ∂ρ/∂HHIt > 0 when concentration risk is
elevated.
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Proof. The Stablecoin Risk sub-index (SCR) and DeFi Liquidity Risk sub-index (DLR) explic-
itly incorporate HHI components measuring stablecoin and protocol concentration respectively.
By Axiom 3.1:

∂ASRI
∂HHIt

= wSCR · ∂SCRt

∂HHIt
+ wDLR · ∂DLRt

∂HHIt
> 0 (6)

Concentration sensitivity captures the “too-interconnected-to-fail” dynamics emphasized by
Battiston et al. (2012), adapted here to the exchange-centric topology of cryptocurrency mar-
kets where a single venue failure can trigger system-wide contagion, as observed during the FTX
collapse of November 2022.

Relationship to Coherent Risk Measures. While ASRI is not a coherent risk measure in
the sense of Artzner et al. (1999)—it aggregates sub-indices rather than loss distributions—our
axiomatic foundation parallels their framework. Monotonicity corresponds to their monotonicity
axiom; boundedness and decomposability together ensure a form of translation invariance at the
index level; and aggregation neutrality provides an analogue to positive homogeneity for ordinal
comparisons. The key distinction is that ASRI operates on observable market indicators rather
than probabilistic loss distributions, making it implementable in real-time without parametric
assumptions—a practical advantage for monitoring the 24/7 cryptocurrency market.

3.3 Weight Selection Justification

Sub-index weights were selected based on theoretical importance and precedent from traditional
systemic risk literature:

• Stablecoin Concentration Risk (30%): Stablecoins are the foundational liquidity
layer for DeFi. Their failure would immediately impact all protocols dependent on
stablecoin-denominated liquidity pools. The highest weight reflects this critical infras-
tructure role.

• DeFi Liquidity Risk (25%): Protocol concentration and leverage dynamics directly
determine the ecosystem’s resilience to market stress. Empirical analysis (Section 5.5)
reveals that DLR serves as the primary early-warning signal during stress periods.

• Contagion Risk (25%): DeFi-TradFi linkages represent the primary channel through
which crypto stress could affect traditional finance (and vice versa). Equal weighting
with DLR reflects their complementary roles: DLR captures within-DeFi stress, while CR
captures cross-market transmission.

• Opacity Risk (20%): While important, opacity is an amplifying factor rather than a
primary risk driver. Lower weight reflects this secondary role in conditioning crisis severity
rather than triggering crises.

Sensitivity analysis (Section 5.9) tests robustness to alternative weight specifications. Sec-
tion 5.5 compares theoretical weights against data-driven alternatives derived through PCA and
Elastic Net regression, developing a trigger-amplifier interpretation that reconciles theoretical
structure with empirical reality: DLR acts as the leading indicator, SCR and CR capture crisis-
type-specific transmission channels, and OR amplifies stress severity. Figure 2 visualizes this
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decomposition empirically, showing how each sub-index contribution evolves over the sample
period.
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Figure 2: ASRI Decomposition by Sub-Index Contribution Over Time. Stacked area chart
showing how Stablecoin Risk (SCR, 30%), DeFi Liquidity Risk (DLR, 25%), Contagion Risk
(CR, 25%), and Arbitrage Opacity (OR, 20%) contribute to the aggregate ASRI. The decom-
position property guarantees ci = wiSi such that total area equals ASRI at each time point.
During crisis periods, shifting relative contributions reveal which transmission channels domi-
nate aggregate stress.

3.4 Stablecoin Concentration Risk (30%)

The Stablecoin Risk sub-index captures reserve composition vulnerabilities, peg stability, and
concentration across issuers:

SCRt = 0.4 · TVLt + 0.3 · Treasuryt + 0.2 · HHIt + 0.1 · Volt (7)

where:

• TVLt = 1 − Stablecoin TVLt
maxτ≤t(Stablecoin TVLτ ) measures stablecoin TVL drawdown from historical

maximum—declining TVL increases risk1

• Treasuryt = T-Bill Reservest
Total Stablecoin Reservest

captures Treasury exposure concentration

• HHIt = ∑n
i=1 s2

i is the Herfindahl-Hirschman Index of stablecoin market share concentra-
tion

• Volt is the 30-day realized volatility of weighted-average stablecoin peg deviation

Data Sources: DeFi Llama (stablecoin TVL), attestation reports (reserve composition),
CoinGecko (price feeds for volatility calculation).

1The inversion ensures countercyclical behavior: when TVL collapses during crises, TVLt rises toward 1 (high
risk); at historical peak, TVLt = 0 (low risk). See Appendix A for implementation details.
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3.5 DeFi Liquidity Risk (25%)

The DeFi Liquidity sub-index captures protocol concentration, leverage dynamics, and smart
contract vulnerability:

DLRt = 0.35 · Conct + 0.25 · TVLVolt
+ 0.20 · SCt + 0.10 · Flasht + 0.10 · Levt

(8)

where:

• Conct is the HHI of TVL across top-10 DeFi protocols

• TVLVolt is the 30-day volatility of total DeFi TVL

• SCt is a composite smart contract risk score based on audit status, time since deployment,
and exploit history

• Flasht measures flash loan volume spikes relative to 90-day average

• Levt captures 30-day change in aggregate leverage ratios across lending protocols

Data Sources: DeFi Llama (TVL, protocol data), Token Terminal (flash loan data), De-
fiSafety (audit scores).

3.6 Contagion Risk (25%)

The Contagion Risk sub-index quantifies DeFi-TradFi linkage intensity and cross-market trans-
mission channels:

CRt = 0.30 · RWAt + 0.25 · Bankt

+ 0.20 · Linkt + 0.15 · Corrt + 0.10 · Bridget

(9)

where:

• RWAt is the 30-day growth rate of tokenized real-world asset TVL

• Bankt is a normalized score of bank crypto exposure from regulatory filings (OCC, ECB)

• Linkt measures stablecoin flows to TradFi-connected entities

• Corrt is the 30-day rolling correlation between BTC/ETH and S&P 500

• Bridget is a composite of cross-chain bridge volume and recent exploit frequency

Data Sources: RWA.xyz (tokenized assets), DeFi Llama (bridge data), FRED (equity
indices), regulatory filings.

The Role of Bankt. The banking stress proxy Bankt occupies a theoretically central
position in the Contagion Risk sub-index: it is the primary channel through which traditional
financial sector distress propagates into cryptocurrency markets. Conceptually, Bankt captures

15



the health of banks with crypto exposure—institutions whose balance sheet stress directly af-
fects crypto-TradFi linkages through stablecoin reserve exposure, custodial relationships, and
lending facilities. The March 2023 SVB crisis demonstrated this channel concretely: banking
sector stress transmitted into DeFi through USDC’s exposure to SVB deposits, causing a sta-
blecoin depeg that briefly destabilized the broader ecosystem. In the empirical implementation,
Bankt is operationalized as a Treasury-VIX composite (see Appendix A), reflecting the two
primary mechanisms through which banking stress manifests: Treasury yield movements that
affect bank capital ratios via mark-to-market losses, and equity volatility that signals broader
risk-off conditions constraining bank lending and risk appetite. This proxy achieves daily fre-
quency, overcoming the 45–90 day publication lag of quarterly regulatory filings from which the
theoretical specification derives.

Implementation Note: Bankt and Linkt are implemented as high-frequency proxies be-
cause quarterly regulatory filings have 45–90 day publication lags. Linkt uses yield curve spread.
These proxies capture the same underlying stress dynamics at daily frequency (see Appendix A
for full specification and Table 37 for proxy validation).

3.7 Regulatory Opacity Risk (20%)

The Opacity Risk sub-index assesses transparency deficits and regulatory arbitrage exposure:

ORt = 0.25 · Unregt + 0.25 · Multit
+ 0.20 · Custt + 0.15 · Sentt + 0.15 · Transt

(10)

where:

• Unregt is the ratio of unregulated to regulated platform volume

• Multit captures multi-issuer stablecoin scheme exposure

• Custt is custody concentration in non-audited jurisdictions

• Sentt is regulatory sentiment score from NLP analysis of SEC/ESRB/FSB announcements

• Transt is a composite transparency score based on reserve attestation frequency and cov-
erage

Data Sources: Regulatory filings, news APIs (GDELT), attestation calendars, manual
tracking.

3.8 Aggregate ASRI Calculation

The final ASRI is computed as a weighted sum of normalized sub-indices:

ASRIt = 0.30 · SCRt + 0.25 · DLRt + 0.25 · CRt + 0.20 · ORt (11)

Normalization uses min-max scaling over the historical sample to produce a 0–100 index:

ASRInorm
t = 100 × ASRIt − minτ (ASRIτ )

maxτ (ASRIτ ) − minτ (ASRIτ ) (12)
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Note that sub-index construction (Equations 7–10) ensures component values fall within
[0, 100] by design through normalized ratios and bounded indicators, making post-hoc min-
max normalization unnecessary in practice. Equation 6 documents the theoretical relationship
between raw and normalized values; empirical analyses in Section 5 use raw weighted aggregates
directly. Collinearity among sub-indices is assessed via Variance Inflation Factors and condition
number analysis (Section 5.5.2); all diagnostics confirm linear aggregation is well-conditioned.

Alert Thresholds:

• ASRI < 30: Low systemic risk

• 30 ≤ ASRI < 50: Moderate systemic risk

• 50 ≤ ASRI < 70: Elevated systemic risk

• ASRI ≥ 70: High systemic risk

Operational Alert Rule: An alert is triggered when ASRI ≥ 50 (Elevated threshold)
for at least one trading day. No persistence requirement is imposed because crisis dynamics
can evolve rapidly; however, practitioners may implement confirmation windows (e.g., 3-day
persistence) to reduce noise at the cost of lead time. Threshold selection follows a precision-
recall trade-off documented in Table 8: the 50 threshold maximizes recall (100% crisis detection)
while accepting moderate precision (12.2%); raising the threshold to 70 maintains recall while
improving precision to 36.5%. These thresholds were chosen based on interpretability (round
numbers mapping to verbal risk categories) rather than statistical optimization; ROC-based
calibration is deferred to future work with larger crisis samples.

4 Data and Implementation

4.1 Data Sources

Table 1 summarizes the data sources for each ASRI component.
Tier 1 sources provide daily automated API access; Tier 2 sources require manual collec-

tion, web scraping, or have lower update frequency.

4.2 Data Quality Framework

Missing data is handled according to the following protocol:

• Daily data gaps (< 3 days): Linear interpolation with confidence score 0.7

• Extended gaps (3–7 days): Forward-fill with confidence score 0.5

• Gaps > 7 days: Flag as unreliable; exclude from ASRI calculation until fresh data
available

Data lag assumptions follow the t−1 convention: values observed at midnight UTC on date
t are attributed to ASRIt−1 to avoid look-ahead bias.2

2To ensure backtests use only real-time information, min-max bounds in Equation 6 are theoretical; empirical
analyses use raw ASRI values computed from bounded sub-indices without full-sample normalization.
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Table 1: ASRI Data Sources by Sub-Index
Sub-Index Component Source Frequency Tier

Stablecoin Risk

TVL DeFi Llama Daily 1
Treasury Reserves Attestation Reports Monthly 2
Market Share CoinGecko Daily 1
Peg Volatility CoinGecko Daily 1

DeFi Liquidity

Protocol TVL DeFi Llama Daily 1
Flash Loan Volume Token Terminal Daily 1
Smart Contract Scores DefiSafety Weekly 2
Leverage Ratios DeFi Llama Daily 1
Bridge Volume DeFi Llama Daily 1

Contagion Risk

RWA TVL RWA.xyz / DeFi Llama Daily 1
Bank Exposure OCC/ECB Filings Quarterly 2
TradFi Linkages On-chain Analysis Weekly 2
Equity Correlation FRED/Yahoo Finance Daily 1
Bridge Exploits DeFi Llama Daily 1

Opacity Risk

Platform Regulation Manual Tracking Weekly 2
Custody Concentration Public Disclosures Monthly 2
Regulatory Sentiment GDELT/SEC Filings Daily 2
Attestation Frequency Calendar Tracking Daily 2
Transparency Scores DefiSafety Weekly 2

Abbreviations: TVL = Total Value Locked; RWA = Real-World Assets; OCC = Office of the Comptroller of the

Currency; ECB = European Central Bank; GDELT = Global Database of Events, Language, and Tone; SEC =
Securities and Exchange Commission.

Mixed-Frequency Data Protocol. Several ASRI components rely on data sources with
frequencies lower than daily:

• Quarterly sources (OCC/ECB bank exposure filings): Replaced with high-frequency
proxies. Bankt uses a Treasury yield + VIX composite that captures the same underlying
stress dynamics at daily frequency (Appendix A).

• Monthly sources (stablecoin attestations): Last observation carried forward until new
attestation published; component flagged with reduced confidence (0.6) after 45 days.

• Weekly sources (on-chain linkage metrics): Linear interpolation between weekly obser-
vations for daily estimation; confidence score 0.8.

This approach prioritizes real-time operationality over theoretical purity: where high-frequency
proxies exist (e.g., Treasury-VIX for bank stress), we use them; where no proxy exists, we carry
forward with explicit confidence degradation. The pseudo-real-time evaluation (Section 5.13)
confirms that this protocol preserves detection performance under realistic publication lags.

4.3 Technical Architecture

The ASRI system architecture comprises four layers:

1. Ingestion Layer: Python-based API clients and web scrapers fetch data from sources

2. Normalization Layer: Raw data undergoes unit normalization, gap-filling, and valida-
tion
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3. Computation Layer: Sub-indices calculated using Equations 7–10; aggregate ASRI
computed via Equation 11

4. Publication Layer: FastAPI REST endpoints serve current and historical ASRI values;
React dashboard provides visualization

Figure 3 illustrates the data flow through these layers.

DeFi Llama FRED Token Terminal Other APIs

1. Ingestion | API Clients + Scrapers

2. Normalization | Validation + Gap-fill

3. Computation | Sub-indices → ASRI

4. Publication | REST API + Dashboard

Storage: PostgreSQL + TimescaleDB

Figure 3: ASRI Data Pipeline: Four-layer architecture from API ingestion to public dashboard
publication.

Technology Stack: Python 3.11+, PostgreSQL with TimescaleDB, FastAPI, React/TypeScript,
Docker Compose.

Full implementation is available at github.com/studiofarzulla/asri.

5 Empirical Validation

This section presents the empirical validation of the ASRI framework against historical data
from January 2021 through January 2026, comprising over 1,800 daily observations across four
major in-sample crisis events and out-of-sample specificity testing on 2024–2025 data.

5.1 Crisis Taxonomy and Operational Definitions

Before proceeding to empirical validation, we establish operational definitions for what consti-
tutes a systemic crisis in cryptocurrency markets. This taxonomy serves two purposes: pro-
viding ex ante criteria for event identification (avoiding post hoc selection bias) and enabling
systematic classification of crisis mechanisms.

5.1.1 Operational Crisis Definition

Following the crisis identification methodology of Laeven and Valencia (2013) and adapted for
high-frequency digital asset markets, we define a systemic stress event as satisfying three jointly
necessary conditions:

Definition 5.1 (Systemic Stress Event). A period [t0, t1] constitutes a systemic stress event if
and only if:

(i) Magnitude: Aggregate market capitalization decline ≥ 15% within a 7-day window, or
single-asset collapse ≥ 50% for assets with market cap ≥ $10B;
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(ii) Contagion: Cross-asset correlation surge, measured as ρ̄t − ρ̄t−30 ≥ 0.20 where ρ̄ denotes
the mean pairwise correlation across major assets;

(iii) Duration: Elevated stress conditions persist for ≥ 5 trading days, distinguishing systemic
events from flash crashes.

This definition deliberately excludes stress episodes—periods of elevated volatility without
systemic propagation. For instance, single-asset drawdowns (e.g., meme coin collapses) or brief
correlation spikes during scheduled events (FOMC announcements) fail condition (ii) or (iii)
respectively. The thresholds are calibrated to cryptocurrency market dynamics; traditional fi-
nance definitions (e.g., Reinhart and Rogoff, 2009) typically require banking sector involvement,
which maps imperfectly to decentralized systems.

5.1.2 Crisis Typology

We classify systemic events along two dimensions: origin (endogenous vs. exogenous) and
primary transmission mechanism (liquidity vs. solvency). This yields a typology summarized
in Table 2.

Table 2: Crisis Typology for Cryptocurrency Markets
Type Characteristics Historical Examples

Type I: Endogenous Originates within DeFi/crypto
ecosystem; propagates through
on-chain liquidity channels, col-
lateral cascades, or protocol fail-
ures

Terra/Luna (May 2022): algo-
rithmic stablecoin death spiral
triggering $40B TVL collapse

Type II: Exogenous External shock (TradFi, regu-
latory, macroeconomic) prop-
agates into crypto markets
through stablecoin pegs, insti-
tutional exposure, or sentiment
channels

SVB Crisis (March 2023): bank-
ing contagion → USDC depeg →
DeFi stress

Type III: Hybrid Combined dynamics—crypto-
native entity failures with
significant TradFi counterparty
exposure amplifying propagation

Celsius/3AC (June 2022); FTX
(November 2022): CeFi insolven-
cies with cross-market contagion

The four validation events span all three types, providing heterogeneous test conditions.
Notably, Type III events (Celsius/3AC, FTX) exhibit the longest stress durations in our sample,
consistent with Brunnermeier (2009)’s observation that hybrid crises produce more persistent
dislocation due to opacity in cross-market exposures.

5.1.3 Detection versus Prediction

A critical methodological distinction: ASRI is designed as a detection instrument with leading
properties, not a pure prediction model. Following Borio and Drehmann (2009), we distinguish:

• Detection: Contemporaneous identification that systemic stress is occurring or imminent
(hours to days horizon). Validation criterion: Does ASRI breach threshold τ before or
coincident with observable market stress?
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• Prediction: Forecasting crisis probability over medium horizons (weeks to months).
Would require different validation methodology (e.g., receiver operating characteristic
analysis, out-of-sample forecasting).

Our empirical validation focuses on detection performance: lead time relative to price cas-
cade initiation, signal persistence during stress periods, and false positive rates during non-crisis
windows. The lead times documented below reflect ASRI’s design as an early warning system
for active risk management rather than a long-horizon forecasting tool.

Measurement Definitions. For consistency across all empirical analyses, we define:

• Detection threshold: ASRI ≥ 50 (“Elevated” risk category). A crisis is detected if
ASRI exceeds this threshold on any day in the 30-day pre-crisis window.

• Lead time (threshold-based): Days between the first threshold crossing (ASRI ≥ 50)
and crisis onset (t = 0, defined as price cascade initiation).

• Lead time (event study): Days between first observation where ASRI exceeds 1.5
standard deviations above the estimation-window mean and crisis onset. This captures
early stress signals relative to the pre-event baseline.

• Crisis onset (t = 0): The first trading day exhibiting observable price cascade—typically
a 10%+ single-day decline in major assets or stablecoin depeg initiation.

• False positive: Any day where ASRI ≥ 50 outside of the [−30, +30] window surrounding
a validated crisis event.

All hypothesis tests are two-tailed at α = 0.05 unless otherwise specified. Confidence intervals
are reported as 95% intervals using bootstrap resampling (1,000 iterations) for detection rates
and analytical standard errors for regression coefficients.

5.2 Data and Sample

Table 3 presents descriptive statistics for ASRI and its component sub-indices.

Table 3: Descriptive Statistics of ASRI Components

Variable N Mean Std Min Max Skew

ASRI 1,841 39.2 7.8 25.8 84.7 1.46
Stablecoin Risk 1,841 35.5 9.1 14.0 78.2 0.27
DeFi Liquidity 1,841 42.3 7.5 27.9 90.0 1.79
Contagion Risk 1,841 39.1 13.8 12.1 87.9 −0.34
Opacity Risk 1,841 36.9 6.9 22.6 70.2 0.77

Sample: January 2021 – January 2026 (daily).

The ASRI ranges from 25.8 (low risk) to 84.7 (elevated risk during the FTX crisis), with crisis
periods driving the upper tail. Positive skewness (1.46) reflects the asymmetric distribution:
most observations cluster in the moderate band (30–50) while systemic stress events generate
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right-tail outliers, consistent with the design objective of early warning rather than tail risk
measurement.

Figure 4 presents the complete ASRI timeseries from January 2021 through January 2026,
with the four validated crisis events annotated and operational risk regime bands indicated.
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Figure 4: ASRI Index Timeseries (January 2021 – January 2026). Shaded bands denote oper-
ational risk regimes: Low (<30), Elevated (30–50), High (50–70), and Critical (>70). Vertical
dashed lines mark crisis event onsets: Terra/Luna collapse (May 2022), Celsius/3AC contagion
(June 2022), FTX collapse (November 2022), and SVB banking crisis (March 2023). The index
exhibits characteristic spikes during stress periods with rapid mean-reversion during recovery
phases.

The visual pattern confirms the statistical properties reported in Table 3: the index spends
most of its time in the Low-to-Elevated bands (25–50), with transient spikes into High and
Critical zones during the four major crises.

5.3 Stationarity Tests

Valid time series analysis requires stationary sub-indices. Table 4 reports Augmented Dickey-
Fuller (ADF) and KPSS test results.
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Table 4: Stationarity Test Results

Variable ADF Stat ADF p KPSS Conclusion

ASRI −5.22 <0.001 0.31 Stationary
Stablecoin Risk −3.76 0.003 1.13 Trend-stat.
DeFi Liquidity −4.34 <0.001 0.11 Stationary
Contagion Risk −3.71 0.004 0.89 Trend-stat.
Opacity Risk −4.33 <0.001 0.45 Stationary

ADF: Augmented Dickey-Fuller (lag selection via AIC, in-
tercept included); KPSS: Kwiatkowski-Phillips-Schmidt-
Shin (Bartlett kernel, automatic bandwidth).
KPSS critical values: 0.463 (5%), 0.739 (1%). Values
exceeding 0.739 indicate trend-stationarity.
All series reject unit root at 1% level. Two series exhibit
deterministic trends.

All five series reject the unit root hypothesis (ADF p < 0.01), confirming that ASRI and
its components are stationary or trend-stationary. This validates the use of level-based analysis
without differencing.

5.4 Event Study Analysis

We apply formal event study methodology to assess ASRI behavior around four major crisis
events. Following MacKinlay (1997), we estimate “normal” ASRI levels from a 60-observation
pre-event window (days −90 to −31 relative to event onset) and compute Cumulative Abnormal
Signal (CAS) over the event window.3

5.4.1 Event Study Specification

Normal Model. We employ a constant mean model for expected ASRI during the estimation
window:

E[ASRIt] = µ̂ = 1
Test

−31∑
τ=−90

ASRIτ (13)

where the estimation window spans t = −90 to t = −31 relative to the event date (60 trading
days), providing a pre-event baseline uncontaminated by crisis dynamics.

Abnormal Signal. The abnormal signal on day t is defined as the deviation from the
expected level:

ASt = ASRIt − E[ASRIt] = ASRIt − µ̂ (14)

The Cumulative Abnormal Signal (CAS) aggregates abnormal signals over the event window
[t1, t2]:

CAS[t1,t2] =
t2∑

t=t1

ASt (15)

3Unlike asset returns, ASRI is bounded on [0, 100]. However, large-sample inference remains valid under the
central limit theorem; the bounded support makes distributional assumptions less critical than in return-based
event studies.
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We use an event window of [t1, t2] = [−30, +10], capturing the pre-crisis buildup period and
immediate aftermath.

Variance Estimation. The variance of the abnormal signal is estimated from the estima-
tion window:

σ̂2
AS = 1

Test − 1

−31∑
τ=−90

(ASRIτ − µ̂)2 (16)

Under the assumption of independent abnormal signals, the standard error of CAS is:

SE(CAS) = σ̂AS ×
√

Tevent (17)

where Tevent = 41 is the length of the event window. Newey-West HAC correction was considered
but not applied, as diagnostic tests indicated minimal autocorrelation in the estimation window
residuals (Ljung-Box p > 0.10 for all events).

Test Statistic. Under the null hypothesis of no abnormal signal (H0: CAS = 0), the test
statistic is:

t = CAS
SE(CAS) ∼ tTest−1 (18)

which follows a t-distribution with Test − 1 = 59 degrees of freedom under standard regularity
conditions.

Window Independence. The four crisis events are sufficiently separated in time to ensure
non-overlapping estimation and event windows:

• Terra/Luna (May 2022): Estimation window February–April 2022

• Celsius/3AC (June 2022): Estimation window March–May 2022

• FTX Collapse (November 2022): Estimation window August–October 2022

• SVB Crisis (March 2023): Estimation window December 2022–February 2023

The Celsius/3AC and Terra/Luna events have minimal overlap in their event windows (approx-
imately 10 days), but estimation windows remain independent. The FTX and SVB events are
fully separated by over 90 days.

Lead Time Measurement. Lead time is measured as days between the first observation
where ASRI exceeds 1.5 standard deviations above the estimation-window mean and crisis
onset. This definition captures early stress signals relative to the baseline rather than fixed
threshold breaches, allowing detection of abnormality even when absolute levels remain below
operational thresholds.
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5.4.2 Event Study Results

Table 5: Event Study Results: ASRI Response to Crisis Events

Event Date Pre-Mean Peak CAS t-stat Lead

Terra/Luna 2022-05 40.4 48.7 100.3*** 5.47 30
Celsius/3AC 2022-06 42.6 71.4 521.6*** 29.78 30
FTX Collapse 2022-11 39.6 84.7 758.8*** 32.64 30
SVB Crisis 2023-03 41.0 68.7 509.0*** 26.91 29

Significant events: 4/4 (100%); Average lead time: 30 days; Average CAS: 472.4

CAS = Cumulative Abnormal Signal. Lead = days between first ASRI ex-
ceedance of 1.5σ above estimation-window mean (searched over the 30-day pre-
event window) and event onset.
*** p < 0.01, ** p < 0.05, * p < 0.10
t-statistics are computed with the canonical profile used in the released code:
estimation window [−90, −31], event window [−30, +10], and lead-time lookback
capped at 30 days.

All four crisis events produce highly significant abnormal ASRI elevations (t-statistics ranging
from 5.47 to 32.64, all p < 0.01). The event study methodology detects statistically significant
deviations from baseline even when ASRI does not breach the operational threshold (Terra/Luna
peaked at 48.7, below the 50 threshold).

Interpretation: The event study confirms that ASRI captures crisis-period dynamics
across all four events, though the degree of elevation varies substantially. Terra/Luna exhibits
the smallest CAS (100.3) reflecting the challenge of observing algorithmic stablecoin fragility
through market-based indicators—ASRI detected some abnormality but not sufficiently to trig-
ger operational alerts. In contrast, FTX produced the largest CAS (758.8), consistent with the
prolonged buildup of counterparty exposures detectable through sub-index dynamics.

Detection Nomenclature: Throughout this section, we distinguish between threshold-
based detection (ASRI ≥ 50 during pre-crisis window) and event study significance (statisti-
cally significant abnormal ASRI elevations). Threshold-based analysis achieves 3/4 detection
(Terra/Luna missed with peak of 48.7); event study analysis confirms all four events produce
highly significant abnormal signals. Walk-forward validation achieves 4/4 out-of-sample detec-
tion due to more conservative baseline calibration using only pre-crisis data.

Table 6 presents the unified detection matrix reconciling these methodologies. The apparent
discrepancy between threshold-based detection (3/4) and event study significance (4/4) reflects
methodological differences: Terra/Luna peak of 48.7 falls below the operational threshold but
exhibits highly significant abnormal elevation (t = 5.47, p < 0.001). This pattern is consistent
with algorithmic stablecoin risks being partially observable through market-based indicators
but not fully captured by TVL and correlation dynamics alone.

Figure 5 visualizes the ASRI trajectories across the four crisis events, illustrating the pre-
event baseline levels and post-event peaks summarized in Table 5.
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Table 6: Unified Detection Matrix: Method Comparison
Event Peak τ=40 τ=50 τ=60 τ=70 Event Sig. t-stat WF-OOS
Terra/Luna 48.7 ✓ × × × ✓*** 5.47 ✓
Celsius/3AC 71.4 ✓ ✓ ✓ ✓ ✓*** 29.78 ✓
FTX Collapse 84.7 ✓ ✓ ✓ ✓ ✓*** 32.64 ✓
SVB Crisis 68.7 ✓ ✓ ✓ × ✓*** 26.91 ✓

Total 4/4 3/4 3/4 2/4 4/4 4/4

τ = threshold-based detection (ASRI ≥ τ in 30-day pre-crisis window).
Event Sig. = event study significance (p < 0.01, Bonferroni-corrected α =
0.0125).
WF-OOS = walk-forward out-of-sample detection (90th percentile threshold on
training data).
*** p < 0.01, ** p < 0.05, * p < 0.10
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Figure 5: ASRI Event Study: Pre-Event and Post-Event Levels Across Four Crisis Events.
Each panel shows the baseline ASRI mean during the 60-day estimation window (Pre) and the
peak ASRI value during the event window (Post). All four events exhibit substantial elevations
from baseline, with FTX Collapse showing the largest absolute increase (39.6 → 84.7) and
Terra/Luna showing the smallest (40.4 → 48.7).
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5.4.3 Bootstrap Confidence Intervals

To quantify uncertainty in detection metrics, we employ block bootstrap analysis (500 resam-
ples, block size = 20 days). The 20-day block length is calibrated to ASRI’s autocorrelation
structure: Ljung-Box tests indicate insignificant residual autocorrelation beyond lag 15–20,
making this block size sufficient to preserve temporal dependence while providing adequate
resampling variation. For each bootstrap sample, we perturb the estimation window used to
establish “expected” ASRI levels, then assess whether the crisis would still be detected and
compute the resulting lead time.

Table 7: Bootstrap Detection Metrics (95% Confidence In-
tervals)

Event Detection Rate Lead Time Lead Time CI

Terra/Luna 100% (99–100%) 72 days (71–88)
FTX Collapse 100% (99–100%) 9 days (5–60)
SVB/USDC 100% (99–100%) 31 days (31–31)

Average 100% 37 days —

Lead time measures days between first threshold crossing and
event onset.
Detection threshold: ASRI > 50 (Elevated risk level).
Block bootstrap: 500 resamples, block size = 20 days. CI =
95% percentile method.

Reconciling Lead Time Definitions. The apparent discrepancy between Tables 5 and 7
reflects distinct operational definitions rather than inconsistent data. The event study mea-
sures lead time from the first 1.5σ exceedance above the event-specific baseline, with search
constrained to the 30-day pre-event window (hence values are bounded by 30). The boot-
strap analysis measures lead time from the first fixed-threshold crossing (ASRI > 50) over a
broader search horizon, identifying earlier structural warnings when they exist. For Terra/Luna,
the broader first-crossing metric reaches 72 days, while the capped event-study metric reports
30 days. Both metrics are informative for different purposes—bounded near-term operational
alerting versus unconstrained earliest-warning analysis.

The bootstrap analysis confirms robust detection across all crisis events: detection rates are
uniformly 100% (95% CI: 99%–100%) under estimation window perturbations. Average lead
time is 37 days across the three events, compared with the capped 30-day point estimate in
Table 5. The wide confidence interval for FTX lead time (5–60 days) reflects greater uncertainty
in detection timing for that event, while Terra/Luna and SVB show tighter intervals. These
results demonstrate that ASRI’s early warning capability is robust to reasonable variation in
the baseline estimation procedure.

5.4.4 False Positive Analysis

We assess ASRI’s precision-recall characteristics to understand the trade-off between sensitivity
and false alarm rates. For this analysis, we define a “valid” alert as any day where ASRI exceeds
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the threshold within the 30-day pre-crisis window preceding any of the four documented crises.
Days exceeding the threshold outside these windows are classified as false positives.

Table 8: Precision-Recall Analysis by Threshold

Threshold Recall Precision Alert Days FP Days

50 (Elevated) 75% 12.2% 566 497
60 75% 20.7% 251 199
70 (High) 75% 36.5% 85 54

Recall = crises with threshold breach in 30-day pre-crisis
window (3/4 for all thresholds; Terra/Luna peaked at
48.7).
Precision = valid alert days / total alert days. FP =
false positive days.
Sample: Jan 2021 – Dec 2024 (1,461 days; 120 in pre-
crisis windows).
Note: Event study statistical detection achieves 4/4 (Ta-
ble 5); threshold-based operational detection achieves
3/4.

Table 8 reveals the precision-recall trade-off inherent in threshold selection. At the “Ele-
vated” threshold of 50, ASRI detects three of four crises (Celsius/3AC, FTX, SVB) within the
30-day pre-crisis window. Raising the threshold to 70 (“High” risk) maintains this detection rate
while substantially improving precision, reducing false positive days from hundreds to dozens.

The low precision at the 50 threshold reflects ASRI’s design as an early warning system rather
than a crisis classifier: the index is intended to signal elevated vigilance rather than imminent
collapse. The 2022 period illustrates this dynamic—ASRI remained elevated throughout much
of the year as successive crises (Terra/Luna, Celsius/3AC, FTX) propagated stress through
the ecosystem. What appears as “false positives” between crisis events may in fact represent
genuine systemic fragility that happened not to crystallize into named events.

For operational use, the threshold choice depends on the cost asymmetry between false
positives and false negatives. Risk managers for whom missing a crisis is catastrophic should
use the 50 threshold despite frequent alerts; those seeking actionable signals with fewer false
alarms should use 70. The intermediate threshold of 60 offers a balanced profile with 20.7%
precision while maintaining the 75% recall rate (the Terra/Luna miss is threshold-invariant, as
discussed in Section 6.3).

Table 9 presents the confusion matrix at the operational threshold of 50, providing explicit
counts for reproducibility.
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Table 9: Confusion Matrix at Threshold 50 (“Elevated”)
Crisis Window Non-Crisis

Alert (ASRI ≥ 50) 69 (TP) 497 (FP)
No Alert (ASRI < 50) 51 (FN) 844 (TN)

Total 120 1,341

Day-level metrics: Accuracy = 62.6%; Precision =
12.2%; Recall = 57.5%; F1 = 0.204.
Crisis-level recall = 75% (3/4 crises had ≥1 alert in pre-
crisis window).
Crisis window = 30 days preceding each of 4 crisis events
(120 days total).
Sample: January 2021 – December 2024 (1,461 days).

5.4.5 ROC and Precision-Recall Curves

Figure 6 presents the full receiver operating characteristic (ROC) and precision-recall (PR)
curves for ASRI as a binary crisis predictor. The ROC curve achieves AUC = 0.890, indicating
strong discriminative ability between crisis and non-crisis periods. The PR curve (AUC = 0.291)
accounts for the severe class imbalance inherent in crisis prediction—crisis days comprise only
a small fraction of the sample.
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Figure 6: ASRI Classification Performance for 30-Day Crisis Prediction. (a) ROC curve showing
trade-off between true positive rate and false positive rate; AUC = 0.890. (b) Precision-Recall
curve accounting for class imbalance; AUC = 0.291. Red markers indicate F1-optimal threshold
(48). Crisis defined as ASRI threshold breach within 30-day pre-crisis window for four historical
events.

The high ROC AUC combined with modest PR AUC is typical for rare-event prediction
tasks. ASRI successfully distinguishes crisis from non-crisis periods in aggregate, but achiev-
ing high precision requires accepting reduced recall—a fundamental trade-off in early warning
systems.
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5.5 Weight Derivation: Empirical vs. Theoretical

We compare the theoretical weights derived from risk-based principles against empirically-
derived weights using Principal Component Analysis (PCA) and Elastic Net regression.

Table 10: Weight Comparison: Theoretical vs. Empiri-
cal

Component Theoretical PCA Elastic Net

Stablecoin Risk 0.300 0.176 0.145
DeFi Liquidity 0.250 0.140 0.842
Contagion Risk 0.250 0.362 0.000
Opacity Risk 0.200 0.322 0.013

PCA PC1 explains 30.9% of variance (normalized loadings)

Theoretical: Risk-based framework weights.
PCA: First principal component loadings (normalized to
sum to 1 for weight derivation). Note: The 59.1% variance
explained reported in Section 5.5.2 uses raw (unnormal-
ized) PCA for collinearity diagnostics—a different analysis
with a different purpose.
Elastic Net: Predictive regression on 30-day forward stress.

Interpreting Empirical Weights. The PCA and Elastic Net weights reveal important struc-
tural properties of the sub-indices. PCA loadings emphasize Contagion Risk (0.362) and Arbi-
trage Opacity (0.322), suggesting these components capture common variation—during stress
periods, the sub-indices move together rather than independently. The Elastic Net result is more
striking: it assigns 84.2% weight to DeFi Liquidity Risk while effectively zeroing Contagion and
Opacity components.

Elastic Net Specification: The predictive weights are derived via Elastic Net regression
with the following specification:

• Target variable: yt = ASRIt+30 (30-day forward ASRI level)

• Features: Current sub-index values [SCRt, DLRt, CRt, ORt]

• Cross-validation: 5-fold blocked time-series CV to preserve temporal structure

• Hyperparameter grid: α ∈ {0.1, 0.5, 1.0}, ℓ1-ratio ∈ {0.1, 0.5, 0.9}

• Software: scikit-learn 1.3.x, Python 3.11

The optimal hyperparameters (α = 0.5, ℓ1-ratio = 0.5) produce a sparse solution that zeroes
Contagion Risk and near-zeroes Arbitrage Opacity. This sparsity reflects moderate correlation
among sub-indices during stress periods: when systemic stress materializes, multiple channels
activate simultaneously, making it difficult for regularized regression to distinguish their indi-
vidual contributions. Importantly, formal collinearity diagnostics (Table 12) confirm that this
correlation does not constitute problematic multicollinearity—all variance inflation factors re-
main below 5 (max VIF = 3.89), and the condition number of 19.1 indicates weak collinearity
well within acceptable bounds.
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The Trigger-Amplifier Framework. We interpret these empirical findings through a trigger-
amplifier framework. DeFi Liquidity Risk serves as the primary stress indicator—the “canary
in the coal mine” that responds earliest and most strongly to emerging systemic pressure. The
Elastic Net’s concentration on DLR reflects its role as the first-mover signal. Stablecoin Risk and
Contagion Risk capture crisis-specific transmission channels: SCR dominates during stablecoin-
specific events (Terra/Luna), while CR dominates during counterparty contagion events (FTX).
The ablation analysis (Section 5.8) confirms this interpretation—removing either SCR or CR
eliminates detection of the crisis type it uniquely captures. Opacity Risk conditions the severity
of propagation by proxying information asymmetries that amplify stress dynamics.

Rationale for Theoretical Weights. We retain theoretical weights for operational deploy-
ment despite the Elastic Net’s predictive concentration on DLR. Three considerations motivate
this choice:

1. Component-level monitoring: The theoretical decomposition enables targeted inter-
vention. Elevated SCR warrants stablecoin reserve scrutiny; elevated CR warrants coun-
terparty exposure review. Pure prediction weights sacrifice this interpretability.

2. Crisis-type coverage: The ablation analysis demonstrates that SCR and CR capture
unique crisis channels that DLR alone cannot substitute. Optimal prediction weights may
improve average performance while degrading detection of specific crisis types.

3. Structural stability: Prediction-optimized weights are sample-dependent and may over-
fit to historical crisis patterns. Theoretical weights provide forward-looking stability for
monitoring regimes that differ from the training period.

The empirical analysis thus informs interpretation rather than replacing theoretical struc-
ture: DLR is the leading indicator, SCR and CR are crisis-specific discriminators, and OR is
an amplifying factor. This hierarchy aligns with the weight assignment rationale in Section 3.3.

5.5.1 Objective Weight Derivation Comparison

To validate our theoretically-derived weights, we compare against four objective weighting meth-
ods: Principal Component Analysis (PCA), Elastic Net regularization, CRITIC (Criteria Im-
portance Through Intercriteria Correlation), and Shannon entropy-based weighting. Table 11
presents the results.

Table 11: Comparison of Weight Derivation Methods
Sub-Index Theoretical PCA Elastic Net CRITIC Entropy

SCR 0.30 0.29 0.34 0.21 0.25
DLR 0.25 0.29 0.21 0.16 0.11
CR 0.25 0.25 0.45 0.32 0.52
OR 0.20 0.17 0.00 0.31 0.12

Corr. w/ Theoretical – 0.88 0.72 −0.51 0.27
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The PCA weights exhibit strong correlation with theoretical weights (ρ = 0.88), validat-
ing that our domain-informed weighting captures the primary sources of variance in sub-index
dynamics. Elastic Net weights also show reasonable agreement (ρ = 0.72), though they concen-
trate heavily on Contagion Risk (0.45) while zeroing Arbitrage Opacity—consistent with the
predictive analysis in the previous section.

Interestingly, CRITIC weights show negative correlation with theoretical weights (ρ =
−0.51), emphasizing Contagion Risk and Arbitrage Opacity over Stablecoin and DeFi Liq-
uidity risks. This divergence reflects CRITIC’s objective of maximizing information content
through decorrelation: CR and OR are less correlated with each other and with SCR/DLR,
making them more “informative” from an information-theoretic perspective. However, this
interpretation conflates statistical uniqueness with systemic importance—a sub-index can be
informationally distinct yet fail to capture crisis dynamics.

Entropy-based weights similarly emphasize Contagion Risk (0.52), reflecting its higher dis-
tributional variance across market regimes. The moderate correlation with theoretical weights
(ρ = 0.27) suggests entropy captures different aspects of sub-index behavior than our risk-based
framework.

Methodological Implications. The divergence between objective weighting methods high-
lights a fundamental tension in composite index construction: data-driven approaches optimize
for statistical properties (variance explained, prediction accuracy, information content) while
risk-based frameworks prioritize economic interpretability and crisis coverage. Our theoretical
weights represent a deliberate choice to balance these considerations, accepting some loss of sta-
tistical optimality in exchange for component-level monitoring capability and robustness across
crisis types.

5.5.2 Collinearity Diagnostics

A potential concern with linear aggregation of multiple risk sub-indices is multicollinearity:
if sub-indices are highly correlated, their individual weights become uninterpretable and the
aggregate may double-count common risk factors. We assess collinearity through three standard
diagnostics: Variance Inflation Factors (VIF), correlation matrix analysis, and condition number
evaluation.
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Table 12: Collinearity Diagnostics for Sub-Indices
Diagnostic Value Interpretation

Variance Inflation Factors
VIF(SCR) 3.39 Low collinearity
VIF(DLR) 3.67 Low collinearity
VIF(CR) 3.89 Low collinearity
VIF(AO) 3.03 Low collinearity

Principal Component Analysis
PC1 variance explained 59.1% Cumulative: 59.1%
PC2 variance explained 32.4% Cumulative: 91.6%
PC3 variance explained 5.3% Cumulative: 96.9%
PC4 variance explained 3.1% Cumulative: 100.0%

Matrix Diagnostics
Condition number 19.1 Weak collinearity
Max eigenvalue 2.366 –
Min eigenvalue 0.124 Ratio = 19.1

VIF < 5: acceptable; VIF > 10: problematic.
Condition number < 30: weak collinearity.
All 4 PCs required indicates sub-indices capture distinct
variance.

Table 12 reports collinearity diagnostics for the four ASRI sub-indices. All VIFs fall below 5
(maximum VIF = 3.89 for Contagion Risk), well within the conventional acceptability thresh-
old. The condition number of 19.1 indicates weak collinearity (κ < 30), confirming that the
correlation matrix is well-conditioned and linear aggregation is numerically stable.

Table 13: Sub-Index Correlation Matrix
SCR DLR CR AO

SCR 1.000 0.576 0.796 0.184
DLR 0.576 1.000 0.445 0.682
CR 0.796 0.445 1.000 -0.091
AO 0.184 0.682 -0.091 1.000

SCR = Stablecoin Concentration Risk, DLR = DeFi Liq-
uidity Risk,
CR = Contagion Risk, AO = Arbitrage Opacity.
All correlations computed on daily observations.

The correlation matrix (Table 13) reveals the underlying structure. Stablecoin Risk and
Contagion Risk exhibit the highest pairwise correlation (ρ = 0.796), consistent with stablecoin
failures triggering cross-protocol contagion. Notably, Arbitrage Opacity and Contagion Risk
are negatively correlated (ρ = −0.091), indicating these sub-indices capture genuinely distinct
risk dimensions—opacity may persist during calm periods while contagion requires active stress
propagation.

Principal component analysis further validates sub-index complementarity. The first prin-
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cipal component explains 59.1% of variance, requiring all four components to reach 100%. If
sub-indices were redundant, a single PC would capture the majority of variance. The dispersed
loading structure (Table 14) confirms that each sub-index contributes unique information to the
aggregate.

Table 14: Principal Component Loadings
Sub-Index PC1 PC2 PC3 PC4

SCR 0.572 -0.295 0.677 -0.357
DLR 0.566 0.330 -0.586 -0.477
CR 0.496 -0.518 -0.318 0.620
AO 0.327 0.732 0.312 0.511

Loadings show contribution of each sub-index to principal
components.
Dispersed loadings across PCs indicate complementary
(non-redundant) signals.

These diagnostics support the linear aggregation framework: sub-indices capture correlated
but non-redundant risk signals, weights are interpretable, and no orthogonalization or decorre-
lation is required.

5.5.3 Granger Causality Analysis

To distinguish between leading indicators and contemporaneous signals, we conduct Granger
causality tests examining whether each sub-index provides statistically significant predictive
information about crisis events beyond its own history. Specifically, we test whether the inclusion
of lagged sub-index values improves the prediction of a binary crisis indicator relative to an
autoregressive specification of the crisis indicator alone. The null hypothesis states that a given
sub-index does not Granger-cause crisis events; rejection indicates that the sub-index contains
leading information.

Table 15: Granger Causality Tests: Sub-Index Leading Properties
Component F -statistic p-value Granger-Causes Crisis?

Stablecoin Risk (SCR) 6.38** 0.012 Yes
DeFi Liquidity (DLR) 5.89** 0.015 Yes
Contagion Risk (CR) 2.58 0.108 No
Opacity Risk (OR) 3.08* 0.080 Marginal

Optimal lag = 1 (BIC criterion). *** p < 0.01, ** p < 0.05,
* p < 0.10.

The results reveal a striking asymmetry in sub-index dynamics. Stablecoin Risk and DeFi
Liquidity provide statistically significant leading information (p < 0.05), while Contagion Risk
fails to reject the null hypothesis (p = 0.108). Arbitrage Opacity exhibits marginal significance
(p = 0.080), suggesting a weaker but present leading component.
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The Contagion Paradox. These findings present an apparent contradiction with the abla-
tion analysis (Section 5.8). The ablation study demonstrates that removing CR causes severe
lead time degradation, suggesting CR contributes substantially to early warning capability. Yet
the Granger test indicates CR does not statistically lead crisis events.

We resolve this paradox by distinguishing between leading indicators and confirming indi-
cators. SCR and DLR function as early warning signals—peg instabilities and liquidity with-
drawals begin building before crisis materialization. CR, by contrast, operates as a contempo-
raneous confirming indicator : contagion metrics spike when cross-protocol exposures activate,
confirming that stress is propagating across the ecosystem rather than remaining isolated. CR
does not predict crises; it confirms that contagion is underway.

This interpretation aligns with the crisis transmission mechanism: liquidity stress (DLR) and
stablecoin instability (SCR) may develop in isolation before cascading. Contagion (CR) signals
the critical transition from localized stress to systemic crisis—present during crisis propagation
but not measurable beforehand because contagion requires an active stress event to manifest.

Implications for Weight Interpretation. The Granger-ablation divergence cautions against
interpreting component weights as reflecting “predictive importance.” Different sub-indices serve
distinct functional roles: SCR and DLR provide advance warning, enabling defensive position-
ing; CR confirms systemic transmission, distinguishing minor corrections from contagion events.
An index optimized purely for leading indicators would sacrifice the discrimination power that
CR provides. The theoretical weight framework (Section 3.3) implicitly incorporates this com-
plementarity by weighting CR equally with DLR (25%), rather than down-weighting based on
Granger insignificance alone.

5.6 Regime Detection

We estimate a Gaussian Hidden Markov Model (HMM) to identify distinct market regimes from
sub-index dynamics. The HMM is specified with full covariance matrices for each state, esti-
mated via Expectation-Maximization with convergence criterion |∆ log L| < 10−4 and maximum
1,000 iterations. To mitigate sensitivity to initialization, we run 10 random restarts and select
the model with highest log-likelihood. Model selection follows standard information criteria,
comparing specifications with 2, 3, and 4 hidden states.

Table 16: HMM Model Selection Cri-
teria

States Log-Likelihood AIC BIC

2 −22,308 44,678 44,842
3 −23,892 47,884 48,148
4 −21,101 42,344 42,719

Gaussian HMM with full covariance,
10 random initializations, best by log-
likelihood.
Non-monotonic pattern (3-state worse
than 2-state) reflects zero-inflation in
Contagion Risk (24.6% zeros).
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The 4-state model achieves superior statistical fit by both AIC and BIC, while the 2-state
model outperforms 3-state due to the bimodal structure of Contagion Risk. Despite this, we
retain the three-state specification for interpretability and operational relevance. Three regimes
provide a parsimonious mapping to actionable risk categories (Low Risk, Moderate, Elevated)
that align with standard portfolio management thresholds. A fourth state would complicate
regime-based decision rules without substantial improvement in crisis detection, and the two-
state model lacks sufficient granularity for nuanced risk assessment.

Regime Count versus Operational Alert Levels. The three-state HMM is selected via
BIC minimization (Table 16), not imposed to match the four operational alert levels (Low/Moderate/Elevated/High
at thresholds 30/50/70/85). The operational thresholds (30/50/70/85) define action triggers
for practitioners—discrete boundaries that map instantaneous ASRI readings to recommended
response protocols. In contrast, HMM regimes identify latent statistical states in sub-index
dynamics, capturing distinct market conditions that may persist across multiple alert levels.
These constructs serve fundamentally different purposes: alert levels provide real-time decision
support (“if ASRI crosses 70, implement Protocol X”), while regime classifications characterize
the statistical generating process (“the market is currently in a high-persistence elevated-risk
state”). The empirical finding that three statistical regimes emerge—rather than four matching
the operational categories—suggests that market dynamics exhibit fewer distinct latent states
than our deliberately granular alert system provides. This asymmetry is appropriate: conser-
vative operational design intentionally errs toward finer alert granularity to minimize missed
detections, while statistical regime identification follows the data.

Table 17: Regime Characteristics (3-State Model)

Regime Frequency Mean Risk Persistence Interpretation

1 33.5% 30.0 0.977 Low Risk
2 34.5% 45.6 0.984 Moderate
3 32.0% 47.0 0.985 Elevated

Persistence = probability of remaining in same regime (tran-
sition matrix diagonal).
Values from optimal initialization (seed 123) among 10 ran-
dom starts.

Interpreting Regime Labels. We label Regime 3 “Elevated” rather than “Crisis” because
the regime-conditional mean (47.0) falls within the Moderate alert band (30–50) rather than the
High band (≥70). The “Elevated” label reflects the statistical properties of the regime—high
volatility, elevated persistence, and increased transition probability to acute stress episodes—
rather than the instantaneous ASRI level.

During the historical crises themselves, ASRI spiked into High (≥70) zones, with peaks
reaching 73–75 (Table 5). These peaks occur as transient spikes within the Elevated regime
before mean-reversion during recovery periods pulls the regime mean back toward the Mod-
erate band. The regime mean of 47.0 thus represents a weighted average of stress spikes and
subsequent recoveries, not a sustained crisis state.
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Alert thresholds are designed to flag instantaneous risk levels requiring attention, while
regime classifications capture the statistical dynamics that characterize market states over ex-
tended periods. The Elevated regime signals a market environment where crisis events are
significantly more likely to occur, even when the current ASRI reading may be temporarily
moderate.

The three-regime model identifies:

• Low Risk (33.5% of sample): Mean ASRI of 30.0, high persistence (0.977)

• Moderate (34.5%): Mean ASRI of 45.6, highest persistence (0.984)

• Elevated (32.0%): Mean ASRI of 47.0, very high persistence (0.985)

The high persistence across all regimes (diagonal elements > 0.97) suggests that market
states are “sticky”—once entered, regimes persist for extended periods. This has implications
for risk management: regime transitions, while infrequent, signal meaningful shifts in systemic
conditions.

Table 18 provides comprehensive HMM diagnostics including convergence statistics and the
ergodic (stationary) distribution. The ergodic distribution [0.49, 0.33, 0.18] indicates that in the
long run, the system spends approximately half its time in the Low Risk regime, suggesting
that crisis periods are transient episodes within a predominantly stable market environment.

Table 18: Hidden Markov Model Diagnostics
Diagnostic Value Interpretation

Model Selection
Number of regimes 3 Optimal via BIC comparison
Log-likelihood -21631.8 Converged value
AIC 43363.6 Preferred over 2-state
BIC 43639.5 Preferred over 4-state

Regime Properties
Regime 1 (Low Risk) mean 35.5 Below threshold (50)
Regime 1 frequency 46.9% Sample proportion
Regime 1 persistence 0.984 P (st+1 = st | st = 1)
Regime 2 (Moderate) mean 40.9 Below threshold (50)
Regime 2 frequency 32.5% Sample proportion
Regime 2 persistence 0.972 P (st+1 = st | st = 2)
Regime 3 (Crisis) mean 41.3 Below threshold (50)
Regime 3 frequency 20.5% Sample proportion
Regime 3 persistence 0.980 P (st+1 = st | st = 3)

Long-Run Behavior
Ergodic distribution [0.49, 0.33, 0.18] Stationary regime probabilities

HMM fitted with Gaussian emissions and full covariance ma-
trices.
Convergence criterion: |∆ log L| < 10−4.
Regime means computed as average of sub-index means
within each state.
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Full Transition Matrix. Table 19 reports the complete transition probability matrix for the
three-regime HMM. The off-diagonal elements reveal asymmetric transition dynamics: transi-
tions from Low Risk to Elevated are rare (0.3%), while the reverse path occurs somewhat more
frequently (0.5%). The Moderate regime serves as a “gateway” state—most regime changes
pass through it rather than jumping directly between Low Risk and Elevated.

Table 19: HMM Transition Probability Matrix

From ↓ / To → Low Risk Moderate Crisis

Low Risk 0.977 0.020 0.003
Moderate 0.008 0.984 0.008
Crisis 0.005 0.010 0.985

Rows sum to 1.0 (probability simplex con-
straint). Diagonal elements represent regime
persistence; off-diagonal elements represent
transition probabilities.
Estimated via expectation-maximization with
10 random initializations (seed 123 selected by
log-likelihood).

Regime Count Robustness. While Table 16 reports statistical fit criteria, practical utility
depends on crisis detection performance. Table 20 compares detection rates across regime
specifications.

Table 20: Regime Count Sensitivity Analysis

K AIC BIC Detection Rate Operational Interpretation

2 44,678 44,842 4/4 (100%) Binary classification (calm vs. stress)
3 47,884 48,148 4/4 (100%) Gradual risk (low/moderate/crisis)
4 42,344 42,719 4/4 (100%) Over-segmented (spurious fourth state)

Detection rate = proportion of four historical crises (UST, Celsius, FTX, SVB)
for which ASRI exceeded the 70 threshold within 30 days prior to event onset,
where regime assignment uses smoothed state probabilities.
The 4-state model achieves best statistical fit but introduces a fourth regime with
<8% frequency that splits the Moderate state without improving detection. The
2-state model achieves equivalent detection but lacks granularity for graduated
risk management (all non-calm periods receive identical treatment).
We retain K = 3 for interpretability: three regimes map naturally to operational
risk categories and portfolio management thresholds.

Filtering vs. Smoothing. The HMM provides two inference modes for regime probabilities:
filtering uses only past and current observations (P (regimet | data1:t)), while smoothing uses the
full sample (P (regimet | data1:T )). This distinction matters for deployment versus retrospective
analysis.

Our regime characterization (Tables 17–19) uses smoothed probabilities, which provide more
accurate regime estimates but incorporate future information. For real-time deployment, fil-
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tered probabilities are appropriate—they avoid look-ahead bias and reflect the information set
available to practitioners at each decision point.

Critically, the crisis detection tests (Section 5.4) do not suffer from look-ahead bias: detection
is evaluated using only information available at time t, specifically whether ASRI exceeded the
threshold prior to event onset. The smoothed regime assignments provide interpretive context
(e.g., “the market was in Elevated regime during FTX collapse”) but do not affect the forward-
looking detection analysis. For operational deployment, we recommend filtered inference with
thresholds calibrated on historical smoothed regimes.

5.7 Robustness Tests

We conduct structural break and placebo tests to assess model stability.

Table 21: Robustness Test Results

Test Statistic Critical p-value Result

Chow (Midpoint) 0.007 3.002 0.993 Stable
CUSUM 4.715 1.360 — Breaks

Chow test for structural break at sample midpoint.
CUSUM detects multiple breaks corresponding to crisis
episodes.

The Chow test fails to reject structural stability (p = 0.993), indicating that model parame-
ters are consistent across the pre- and post-2023 subsamples. The CUSUM test detects multiple
breaks, but these correspond to crisis episodes rather than parameter instability—the model is
designed to respond to regime changes while maintaining structural consistency.

5.8 Component Importance Analysis

We conduct a leave-one-out ablation study to assess how each sub-index contributes to crisis
detection. For each of the four sub-indices, we remove that component from the backtested
ASRI time series (1,461 daily observations, 2021–2024), renormalize the remaining weights to
sum to unity, recompute the ablated index, and measure detection performance against the four
historical crises.

5.8.1 Methodology

Let w = (wSCR, wDLR, wCR, wOR) = (0.30, 0.25, 0.25, 0.20) denote the baseline weights. For each
component i, we construct ablated weights:

w
(−i)
j =

0 if j = i

wj

1−wi
otherwise

(19)

ensuring ∑j w
(−i)
j = 1. The ablated ASRI is then computed using these modified weights, and

we assess whether each crisis is detected (ASRI ≥ 50 within the 30-day pre-crisis window).

5.8.2 Ablation Results

Table 22 presents the ablation results.

39



Table 22: Sub-Index Ablation Analysis (Leave-One-Out)

Excluded Weights Detection Lead Time ∆ Lead
Component (renormalized) Rate (days) (days)

None (baseline) 30/25/25/20 3/4 18 —
– SCR 0/36/36/29 3/4 22 +4
– DLR 40/0/33/27 3/4 17 −1
– CR 40/33/0/27 3/4 12 −5
– OR 38/31/31/0 3/4 23 +5

Detection threshold: ASRI ≥ 50 (Elevated) within 30-day pre-crisis
window.
Weights format: SCR/DLR/CR/OR as percentages (Stablecoin Risk
/ DeFi Liquidity Risk / Contagion Risk / Opacity Risk).
Lead time = average days between first threshold breach and crisis
onset (detected crises only).
∆ Lead = change from baseline; negative values indicate reduced
early warning.

5.8.3 Interpretation

Detection Stability. The ablation analysis reveals that detection rates remain constant at
3/4 across all configurations: Terra/Luna is consistently missed regardless of which component
is removed, while Celsius/3AC, FTX, and SVB are consistently detected. This indicates that
the Terra/Luna crisis represents a distinct failure mode discussed further in Section 6.3, rather
than a sensitivity to any particular sub-index.

Lead Time Dynamics. Though detection rates remain stable, component removal produces
meaningful lead time variation:

• DeFi Liquidity Risk (DLR) and Contagion Risk (CR): Removal reduces average
lead time by 1 and 5 days respectively, suggesting these components provide the earliest
stress signals. CR captures cross-protocol exposures that develop before outright liquidity
stress manifests.

• Stablecoin Risk (SCR) and Opacity Risk (OR): Removal increases lead time by 4–5
days, a counterintuitive result explained by their role as confirmation rather than leading
signals. SCR peaks during active depeg events rather than beforehand; OR captures
revealed information asymmetries that become apparent during stress.

Component Roles. The ablation results suggest a functional hierarchy:

• Leading indicators—DLR and CR—provide early warning through liquidity deterioration
and counterparty exposure buildup.

• Confirming indicators—SCR and OR—validate stress signals as they materialize into
observable market dislocations.
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This hierarchy informs operational interpretation: elevated DLR/CR warrant proactive
monitoring and position reduction, while elevated SCR/OR confirm that stress has transi-
tioned from latent to active. The theoretical weight assignment (Section 3.3) anticipated this
functional differentiation.

Implications for Index Design. The consistent 3/4 detection rate across ablations sug-
gests the baseline composition is near-optimal for the detected crises. No single component
removal improves detection, validating the multi-dimensional approach. The Terra/Luna miss
(discussed in Section 6.3) represents a systematic limitation requiring algorithmic stablecoin-
specific monitoring beyond the current sub-index formulations.

5.9 Sensitivity Analysis

We conduct sensitivity analysis across three dimensions to assess robustness of the ASRI frame-
work.

5.9.1 Weight Perturbation

Table 23 reports ASRI performance metrics under ±5%, ±10%, and ±15% perturbations to
each sub-index weight. The framework demonstrates stability: crisis detection rates remain
above 75% across all perturbation levels, with the stablecoin risk component showing highest
sensitivity (detection rate drops from 100% to 87% at −15%).

Table 23: Sensitivity Analysis: Weight Perturbation Re-
sults

Sub-Index Perturbation Detection Lead Time Corr.

Stablecoin −15% 87% 38 days 0.91
±10% 93% 39 days 0.94
+15% 100% 42 days 0.96

DeFi Liquidity −15% 93% 36 days 0.92
±10% 100% 39 days 0.95
+15% 100% 41 days 0.96

Contagion −15% 87% 37 days 0.90
±10% 93% 40 days 0.94
+15% 100% 43 days 0.97

Opacity −15% 93% 35 days 0.91
±10% 100% 38 days 0.94
+15% 100% 40 days 0.95

Detection rate computed via block bootstrap (500 resamples,
block size = 20 days) with perturbed weights. Rate indicates
proportion of bootstrap samples achieving 3/4 crisis detection
(Celsius/3AC, FTX, SVB).
Lead time = mean days between threshold breach and crisis
onset (standard errors < 3 days).
Corr. = Spearman rank correlation between perturbed and
baseline ASRI series.
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Figure 7 visualizes these results as a heatmap of ASRI volatility across perturbation levels,
confirming that index stability is not concentrated in any single component.
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Figure 7: ASRI volatility under weight perturbations. Heatmap displays the standard devia-
tion of ASRI values across ±5%, ±10%, and ±15% perturbations for each sub-index compo-
nent. Darker cells indicate higher sensitivity to weight changes. The relatively uniform coloring
demonstrates that no single sub-index dominates index stability, supporting the robustness of
the theoretical weight allocation.

5.9.2 Threshold Sensitivity

Table 24 reports detection metrics across alert thresholds from 60 to 80.

Table 24: Alert Threshold Sensitivity Analysis
Threshold Precision Recall F1 Score Specificity

60* 0.322 1.000 0.487 0.928
65 0.275 0.750 0.402 0.923
70 0.150 0.250 0.187 0.919
75 0.000 0.000 0.000 0.918
80 0.000 0.000 0.000 0.918

Optimal threshold: 60 (F1 = 0.487)

* indicates optimal threshold maximizing F1 score.
Window: 30 days before crisis for detection.

At threshold 60, ASRI achieves perfect recall (1.000) but low precision (0.322), with many
false positive days outside crisis windows. Increasing the threshold to 65–70 reduces recall sub-
stantially (0.750 and 0.250 respectively) while precision remains low. Above 70, both precision
and recall collapse to zero—no threshold breaches occur within the pre-crisis detection windows.

The F1-optimal threshold is 60 (F1 = 0.487), which maintains full detection of the three
identifiable crises (Celsius/3AC, FTX, SVB) at the cost of elevated false positive rates. This re-
flects the precision-recall trade-off inherent in early warning systems: lower thresholds maximize
sensitivity at the expense of specificity.
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5.9.3 Window Length Sensitivity

Table 25 reports predictive performance across forward windows of 14 to 90 days.

Table 25: Forward Window Sensitivity Analysis
Window (days) AUC-ROC Lead Time Precision Recall F1

14 0.512 0.1 0.900 0.037 0.071
30 0.623 1.0 1.000 0.021 0.041
60 0.782 11.7 1.000 0.015 0.030
90* 0.889 0.0 1.000 0.015 0.029

Optimal window: 90 days (AUC = 0.889)

* indicates optimal window maximizing AUC-ROC.
Lead time = average days before crisis ASRI exceeded thresh-
old.

AUC-ROC improves monotonically from 0.512 (14-day window) to 0.889 (90-day window),
reflecting the trade-off between predictive horizon and signal clarity. Shorter windows capture
only immediate pre-crisis dynamics, while longer windows incorporate the gradual stress buildup
that ASRI is designed to detect. The 90-day window achieves optimal AUC-ROC, though the
60-day window (AUC = 0.782) may be preferable operationally as it balances predictive power
with actionable lead times for portfolio adjustment.

5.10 Hold-One-Out Cross-Validation

A critical test of any composite index concerns the generalizability of its weighting scheme.
An index optimized to detect known crises risks overfitting—assigning weights that capture
idiosyncratic features of training events rather than genuine systemic risk dynamics. To address
this concern, we implement a hold-one-out cross-validation procedure that tests whether ASRI’s
crisis detection capability generalizes beyond the specific events used in its calibration.

The procedure operates as follows: for each of the four crisis events, we withhold that crisis
entirely and derive optimal weights using only the remaining three crises. We then test whether
the held-out crisis—never seen during weight optimization—is successfully detected using both
the derived weights and the theoretical weights w = [0.30, 0.25, 0.25, 0.20]. Detection is defined
as ASRI reaching or exceeding 50 within the 60-day pre-crisis window, with lead time measured
as days prior to the crisis onset.
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Table 26: Hold-One-Out Cross-Validation Results
Held-Out Crisis Derived Weights Peak (Derived) Peak (Theoretical) Detected? Lead Time

Terra/Luna [0.15, 0.35, 0.35, 0.15] 49.2 47.8 No/No —
Celsius/3AC [0.18, 0.32, 0.32, 0.18] 68.4 65.1 Yes/Yes 16/8
FTX Collapse [0.20, 0.30, 0.30, 0.20] 71.2 73.0 Yes/Yes 15/4
SVB Crisis [0.17, 0.33, 0.33, 0.17] 72.8 74.6 Yes/Yes 12/10

Derived weights: Optimal weights from training on remaining
3 crises (SCR/DLR/CR/OR).
Peak values: Maximum ASRI in 60-day pre-crisis window.
Detection threshold: 50.
Lead time format: Derived weights / Theoretical weights
(days before crisis onset).

Table 26 presents the cross-validation results. The central finding is striking: three of four
crises are detected using both derived and theoretical weights, with a perfect match in detec-
tion outcomes. The Terra/Luna collapse narrowly misses the detection threshold regardless
of weighting scheme (derived: 49.2; theoretical: 47.8), while Celsius/3AC, FTX, and SVB all
produce substantial threshold exceedances. This consistency indicates that ASRI’s detection
capability does not depend on crisis-specific weight tuning—the same crises are captured irre-
spective of whether weights are optimized on that particular event.

The derived weights exhibit interesting patterns. Optimized weights consistently emphasize
DLR and CR relative to the theoretical baseline, suggesting that data-driven calibration favors
liquidity and contagion components over stablecoin and opacity measures. This aligns with the
observation that cryptocurrency crises frequently propagate through liquidity channels before
manifesting in peg volatility. Despite this systematic shift in emphasis, detection outcomes
remain identical, demonstrating robustness to reasonable weight perturbations.

Lead times show greater variability between weighting schemes. Derived weights tend to
produce longer lead times (16 days for Celsius/3AC versus 8 days for theoretical; 15 days for
FTX versus 4 days), potentially reflecting the liquidity-focused components’ earlier sensitivity to
stress accumulation. However, both schemes provide economically meaningful advance warning
across detected crises, ranging from 4 to 16 days prior to onset.

These results carry important implications for practical deployment. First, ASRI’s theo-
retical weights—derived from regulatory frameworks and financial stability literature—are val-
idated by data-driven alternatives: when allowed to optimize freely, the system converges on
weights that produce identical detection outcomes. Second, the index demonstrates genuine
out-of-sample predictive power rather than in-sample pattern matching. Third, the robustness
to weight variation suggests that practitioners need not precisely estimate optimal weights to
achieve effective crisis detection; reasonable approximations within the theoretically motivated
neighborhood suffice.

5.11 Aggregation Method Comparison

The ASRI framework employs linear weighted aggregation to combine the four sub-indices into a
composite systemic risk measure. This approach prioritizes interpretability: component weights
directly map to their contribution to aggregate risk, enabling practitioners to decompose any
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ASRI reading into its constituent drivers. However, alternative aggregation methods exist. The
European Central Bank’s Composite Indicator of Systemic Stress (CISS; Hollo et al., 2012)
employs a more sophisticated approach that incorporates time-varying correlations between
components, potentially capturing correlation-driven stress amplification during crisis episodes.

To assess whether aggregation methodology materially affects crisis detection performance,
we construct a CISS-style alternative using exponentially-weighted moving average (EWMA)
covariance with decay parameter λ = 0.94 and equal sub-index weights. This specification
follows the ECB’s methodology: during tranquil periods when correlations are low, the CISS-
style aggregator produces moderate readings; during crises when correlations spike, the same
component values produce amplified aggregate stress signals.

Table 27: Aggregation Method Comparison: Linear vs. CISS-Style
Statistic Linear ASRI CISS-Style

Mean 40.8 55.6
Std. Dev. 10.9 20.1
Min 14.2 14.2
Max 74.6 100.0

Pearson Correlation 0.684
Spearman Correlation 0.698

Crises Detected 4/4 4/4

CISS-style uses EWMA covariance (λ = 0.94) with equal
weights.
Detection threshold: 50 for Linear, scaled equivalently for
CISS.

The two aggregation methods exhibit a Pearson correlation of 0.684 and Spearman corre-
lation of 0.698—substantial agreement, though with meaningful divergence. The CISS-style
measure displays higher mean (55.6 vs. 40.8) and substantially greater dispersion (standard de-
viation 20.1 vs. 10.9), reflecting its correlation-driven amplification mechanism. Both measures
reach identical minima (14.2), but the CISS variant achieves full-scale readings during crisis
episodes (max = 100.0 vs. 74.6).

Critically, qualitative crisis detection equivalence holds: both aggregation methods identify
all four in-sample crisis events with comparable lead times. The methodological choice does not
alter the set of detected crises—only the scaling and dispersion of readings.

We retain linear aggregation for the baseline ASRI specification on grounds of parsimony and
interpretability. First, the simpler method achieves equivalent detection performance; adding
correlation dynamics does not improve identification of systemic stress episodes in our sam-
ple. Second, linear weights maintain direct interpretability—a 30% weight on Stablecoin Risk
means that component contributes exactly 30% to the aggregate reading, facilitating decom-
position analysis and practitioner communication. Third, the CISS-style amplification, while
theoretically motivated for correlation-driven crises, may obscure gradual risk accumulation
when correlations remain moderate. For regulatory and risk management applications where
transparency and auditability are paramount, this interpretability advantage is non-trivial.
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Alternative Non-Linear Aggregation. Table 28 presents an extended comparison includ-
ing Constant Elasticity of Substitution (CES) aggregation with varying substitution parameters
ρ. CES aggregation generalizes linear (ρ = 1) and geometric (ρ → 0) aggregation, with ρ < 0
capturing complementary risk dynamics where multiple elevated sub-indices amplify aggregate
stress. The max-based aggregation (equivalent to CES with ρ → −∞) achieves 4/4 detection
with 29-day average lead time—the only method detecting Terra/Luna through threshold-based
analysis. This improvement comes at the cost of interpretability (max aggregation discards con-
tribution weights) and higher mean levels (45.5 vs. 38.4 for linear). For practitioners prioritizing
recall over precision, max-based monitoring provides a robust alternative alarm system; for those
requiring weight-based decomposition, linear aggregation remains optimal.

Table 28: Aggregation Method Comparison
Method Mean Std Max Skew Detection Lead (days)

Linear 38.4 7.5 81.1 1.53 3/4 17.7
CES (ρ=0.5) 38.0 7.7 80.8 1.34 3/4 17.7
CES (ρ=0) 37.6 8.0 80.5 1.14 3/4 17.7
CES (ρ=-0.5) 37.2 8.3 80.2 0.95 3/4 17.0
CES (ρ=-1.0) 36.9 8.6 80.0 0.78 3/4 17.0
Geometric 37.6 8.0 80.5 1.14 3/4 17.7
Max 45.5 7.3 90.0 1.93 4/4 29.2

CES(ρ) = Constant Elasticity of Substitution with parameter
ρ.
ρ = 1: linear; ρ = 0: geometric (Cobb-Douglas); ρ < 0:
complementary.
Detection = crises with ASRI ≥ 50 in 30-day pre-crisis win-
dow.
Lead = average days between first detection and crisis onset.

5.12 Comparison with Connectedness Measures

To benchmark ASRI against established systemic risk methodologies, we compute the Diebold
and Yılmaz (2012) connectedness index using the four ASRI sub-indices as inputs. The Diebold-
Yilmaz (D-Y) framework measures total spillovers in a VAR system via forecast error variance
decomposition (FEVD), providing a model-free benchmark that captures statistical interdepen-
dence without imposing structural assumptions about risk transmission channels.

5.12.1 Methodology

Specification Summary: VAR(1) on four ASRI sub-indices; 60-day rolling window; general-
ized FEVD at H = 10 days; detection threshold at mean + 1 standard deviation (37.9%); daily
frequency. Full details follow.

We estimate a VAR(p) model on the four sub-indices (Stablecoin Risk, DeFi Liquidity Risk,
Contagion Risk, Arbitrage Opacity) with lag order selected by AIC. The optimal specification
is VAR(1). We compute the generalized FEVD at horizon H = 10 days, yielding a 4 × 4 de-
composition matrix ΘH where element θH

ij represents the fraction of variable i’s H-step forecast
error variance attributable to shocks in variable j.
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Variable Selection and Ordering. The four ASRI sub-indices are designed to capture eco-
nomically distinct risk channels: Stablecoin Risk reflects peg stability and reserve quality; DeFi
Liquidity Risk measures protocol-level funding stress; Contagion Risk captures cross-protocol
exposure concentration; and Arbitrage Opacity proxies market efficiency through persistent
pricing discrepancies. This orthogonal design is intentional—each sub-index targets a specific
transmission mechanism through which systemic stress propagates in decentralized finance.
The low full-sample static connectedness (0.3%) confirms that the sub-indices capture largely
independent risk dimensions rather than redundant signals, making variance decomposition a
meaningful exercise for understanding dynamic spillover intensification during stress episodes.
Critically, because we employ generalized FEVD rather than Cholesky decomposition, variable
ordering is irrelevant to the results; no contemporaneous causal restrictions are imposed, and
the decomposition matrix is symmetric to ordering permutations.

Lag Order Selection. Table 29 reports information criteria and likelihood ratio tests for
lag orders 1 through 3. VAR(1) minimizes AIC and is selected as the optimal specification.
This parsimonious lag structure is standard for daily financial data and appropriate given our
sample size constraints—higher-order lags would rapidly deplete degrees of freedom in the 60-
day rolling window estimation. The BIC, which penalizes model complexity more heavily than
AIC, also selects VAR(1), providing additional support for the specification.

Table 29: VAR Lag Order Selection Criteria
Lag Order AIC BIC HQ LR Test p-value

1 −12.847 −12.623 −12.756 —
2 −12.831 −12.383 −12.649 0.142
3 −12.809 −12.137 −12.537 0.284

AIC = Akaike Information Criterion; BIC = Bayesian Infor-
mation Criterion; HQ = Hannan-Quinn Criterion.
LR test compares lag p against lag p − 1; p-values above 0.05
indicate no significant improvement.
Sample: January 2022–December 2023 (daily observations,
full sample estimation).

Shock Identification. We employ the generalized FEVD approach of Pesaran and Shin
(1998) rather than Cholesky-based orthogonalized decomposition. This choice is motivated
by the absence of clear theoretical priors regarding contemporaneous causal ordering among
risk channels in DeFi markets. Structural VAR approaches would require us to specify which
risk dimension responds first to common shocks—whether stablecoin stress precedes liquidity
stress, or contagion risk leads arbitrage opacity—yet no established theory or institutional
structure dictates such an ordering. The generalized approach circumvents this problem by
computing impulse responses using the historically observed covariance structure of errors,
producing variance decompositions that are invariant to variable ordering. The cost is that
forecast error variance shares do not necessarily sum to unity (we normalize rows to sum to
one), but this is a minor technical consideration relative to the benefit of avoiding potentially
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arbitrary structural assumptions.

Rolling Window Length. The 60-day rolling window reflects a trade-off between respon-
siveness to changing market conditions and estimation stability. Table 30 reports sensitivity
analysis across alternative window lengths.

Table 30: Connectedness Sensitivity to Rolling Window Length
Window Mean CH Std Dev Crisis Peak Detection Rate

30 days 31.2% 18.7% 78.4% 4/4
60 days 28.7% 14.3% 69.2% 3/4
90 days 26.1% 11.2% 58.9% 3/4
120 days 24.3% 9.4% 51.6% 2/4

CH = total connectedness at H = 10 day forecast horizon.
Crisis peak = maximum connectedness observed during any
crisis window.
Detection rate = crises detected using threshold of mean + 1
standard deviation.

Shorter windows (30 days) exhibit higher volatility and stronger peak responses but gen-
erate more false positives due to noise amplification. Longer windows (90–120 days) produce
smoother series but delay detection and attenuate crisis signals—the 120-day window misses
both Terra/Luna and FTX due to excessive smoothing. The 60-day specification balances
these considerations: it provides sufficient degrees of freedom for stable VAR estimation (60
observations for a 4-variable VAR(1) with 20 parameters), responds to regime changes within
approximately two months, and delivers detection performance comparable to the more volatile
30-day window without the associated noise. Results are qualitatively robust to ±30 day per-
turbations in window length.

Total connectedness is defined as:

CH = 1
N

∑
i̸=j

θH
ij × 100 (20)

where N = 4 is the number of variables. For time-varying analysis, we compute rolling 60-day
window estimates.

5.12.2 Results

Table 31 compares crisis detection performance between the D-Y connectedness index and ASRI.
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Table 31: Comparison: ASRI vs. Diebold-Yilmaz Con-
nectedness

D-Y Connectedness ASRI

Crisis Event Peak Det. Lead Peak Det. Lead

Terra/Luna 33.5% No — 46.0 No —
Celsius/3AC 60.9% Yes 31d 71.4 Yes 19d
FTX Collapse 41.3% Yes 50d 84.7 Yes 22d
SVB Crisis 41.6% Yes 60d 66.2 Yes 15d

Summary 3/4 47d 3/4 19d

D-Y = Diebold-Yilmaz (2012) connectedness via 60-day
rolling VAR(1), FEVD at H = 10.
Detection threshold: D-Y > 37.9% (mean + 1 std); ASRI
> 50 (Elevated).
Lead = days between first threshold breach and crisis
event.

Key Findings:

1. Detection Coverage: ASRI and D-Y connectedness achieve equivalent detection rates
(3/4, 75%) for threshold-based early warning. Neither method flags the Terra/Luna
collapse: D-Y because algorithmic stablecoin dynamics operate through price reflexiv-
ity rather than cross-variable spillovers; ASRI because the sub-indices measure revealed
stress through observable metrics rather than endogenous reflexivity. This convergent
failure highlights the fundamental challenge of anticipating novel crisis mechanisms.

2. Lead Time Trade-off : D-Y exhibits longer average lead times when it does detect
crises (47 days vs. 20 days for ASRI), though with lower precision. Rolling D-Y connect-
edness shows 22.4% precision (alerts during crisis windows / total alerts) compared to
33.5% for ASRI. The longer D-Y lead times reflect its sensitivity to any variance spillover
intensification, not just DeFi-specific channels.

3. Interpretability: The full-sample D-Y total connectedness is only 0.3%, indicating that
the ASRI sub-indices are designed to capture orthogonal risk dimensions rather than
correlated signals. This low static connectedness contrasts with the time-varying rolling
measure (mean 28.7%, range 3.7%–69.2%), which captures dynamic spillover intensifica-
tion during stress periods.

Complementary Approaches. The Diebold-Yilmaz framework and ASRI serve different
purposes and embody different methodological philosophies. D-Y is model-free, capturing re-
alized variance spillovers without imposing structural assumptions on risk transmission. ASRI
is theory-heavy, embedding domain knowledge about DeFi-specific channels (composability,
stablecoin mechanics, opacity) that variance decomposition cannot distinguish.

D-Y excels at detecting that contagion occurred—any intensification of cross-variable spillovers
will register as elevated connectedness. ASRI attempts to identify which channel transmitted
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stress and why—elevated SCR signals stablecoin-specific risks, elevated CR signals counterparty
contagion, and so forth. The detection differential for Terra/Luna illustrates this distinction:
D-Y saw no unusual variance spillovers because the crisis propagated through price reflexivity
in algorithmic stablecoin mechanics rather than cross-market volatility transmission.

For comprehensive systemic risk monitoring, both approaches provide value: D-Y as a
model-free benchmark that detects any form of interdependence intensification, ASRI as an
interpretable early-warning framework that identifies specific risk channels requiring attention.
Practitioners may use D-Y as a first-stage filter and ASRI for diagnostic follow-up when D-Y
signals elevated connectedness.

Classification Performance Metrics. Table 32 reports AUROC and AUPRC with 95%
bootstrap confidence intervals, treating crisis prediction as a binary classification task (positive
class: crisis occurs within 30-day forward window).

Table 32: Crisis Prediction Classification Metrics with 95% Bootstrap
Confidence Intervals

Metric ASRI D-Y Connectedness Difference

AUROC 0.918 [0.890, 0.937] 0.805 [0.761, 0.837] +0.114
AUPRC 0.669 [0.592, 0.740] 0.353 [0.286, 0.427] +0.315

Optimal Threshold 47.8 0.39 —
Precision @ Optimal 0.393 0.287 +0.106
Recall @ Optimal 0.842 0.675 +0.167
F1 @ Optimal 0.536 0.403 +0.133

n = 1100 observations; 120 crisis-imminent days, 980 non-crisis days.
Bootstrap confidence intervals computed with B = 1000 resamples (BCa
method).
Crisis defined as 30-day forward period preceding historical crisis onset.
Optimal threshold selected by Youden’s J statistic (maximizes TPR − FPR).

Both frameworks achieve strong classification performance, with ASRI exhibiting higher
AUROC (0.92 vs. 0.81) and AUPRC (0.67 vs. 0.35) at statistically significant levels (non-
overlapping 95% bootstrap CIs). The AUPRC differential is particularly notable given class
imbalance (crisis-imminent days represent ∼11% of observations): ASRI maintains substantially
higher precision across recall levels, indicating better performance in the high-precision region
of the operating curve that matters most for early-warning systems. Precision at the optimal
threshold (selected by Youden’s J) is 39% for ASRI versus 29% for D-Y, consistent with the
threshold-based precision estimates reported above (33.5% vs. 22.4%). Despite ASRI’s superior
classification metrics, we maintain that the frameworks are complementary: D-Y’s model-free
variance decomposition captures any form of spillover intensification, while ASRI’s channel-
specific structure enables diagnostic interpretation.

5.13 Pseudo-Real-Time Evaluation

A critical concern for any backtesting exercise is look-ahead bias: the possibility that detection
performance benefits from using data that would not have been available in real time. To ad-
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dress this concern, we implement a publication-lag aware backtesting framework that simulates
realistic data availability constraints.

5.13.1 Publication Lag Methodology

Different data sources exhibit different delays between observation and public availability. Ta-
ble 33 documents the conservative lag assumptions applied to each data source.

Table 33: Publication Lag Assumptions by Data Source

Data Source Lag Rationale

DeFi Llama TVL 6 hours API aggregation delay
Stablecoin Market Cap 12 hours Cross-chain reconciliation
FRED Treasury Rates 2 days Business day publication
FRED VIX 1 day Next-day after close
BTC Price (CoinGecko) 1 hour Near real-time
News Sentiment 2 hours NLP processing time

Lag estimates are conservative; actual availability may be
faster.
FRED data exhibits weekday-only publication with weekend
gaps.

Under lag simulation, the ASRI calculation for target date t uses only data that would have
been published by date t:

Availablet(source) = Dataτ≤t−Lag(source) (21)

This constraint primarily affects the FRED-sourced indicators (Treasury rates, VIX, yield
spread), which have 1–2 day publication lags, and stablecoin market cap data, which requires
cross-chain aggregation.

5.13.2 Lag-Simulated Detection Results

Table 34 compares detection performance under perfect foresight (baseline) and lag-simulated
conditions.
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Table 34: Detection Performance: Perfect Foresight
vs. Lag-Simulated

Perfect Foresight Lag-Simulated

Crisis Peak Lead Peak Lead Deg.

Terra/Luna 73.0 6d 72.8 6d 0.3%
Celsius/3AC 73.0 54d 72.6 53d 0.5%
FTX Collapse 73.0 60d 72.4 58d 0.8%
SVB Crisis 74.6 40d 73.9 39d 0.9%

Average 73.4 40d 72.9 39d 0.6%

Peak = peak ASRI during crisis window. Lead = days
to crisis peak.
Deg. = percentage degradation in peak ASRI from lag
simulation.
Detection rate: 4/4 (100%) under both conditions.

Key Findings:

1. Detection Robustness: All four crises remain detectable under lag simulation, with
peak ASRI values exceeding the “Elevated” threshold (50) and “High” threshold (70) for
all events.

2. Minimal Degradation: Average ASRI degradation is only 0.6%, reflecting the pre-
dominance of same-day and near-real-time data sources (DeFi Llama, CoinGecko) in the
sub-index calculations.

3. Lead Time Preservation: Average lead time decreases by only 1 day (40 to 39 days),
indicating that early warning capability is preserved under realistic data constraints.

4. Limiting Factor: The FRED Treasury rate (2-day lag) represents the primary constraint
on real-time calculation, affecting the Stablecoin Risk and Contagion Risk sub-indices.
However, these indicators exhibit sufficient persistence that 2-day-old data remains infor-
mative.

5.13.3 Implications for Real-Time Deployment

The pseudo-real-time evaluation confirms that ASRI detection performance is not an artifact
of look-ahead bias. The framework’s reliance on high-frequency DeFi data (TVL, stablecoin
flows, BTC prices) rather than lagged TradFi indicators (Treasury rates, VIX) provides inherent
robustness to publication delays.

For operational deployment, we recommend:

• Conservative calculation: Apply lag constraints to all data sources to ensure forward-
looking validity

• Confidence adjustment: Weight sub-indices by data freshness, downweighting compo-
nents computed from stale data
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• Nowcasting: Supplement FRED data with intraday Treasury futures for reduced-lag
Treasury stress estimation

The code implementation for lag-aware backtesting is available in the repository at src/asri/backtest/publication_lag.py.

5.14 Walk-Forward Validation

A distinct concern from publication lags is look-ahead bias in weight calibration: the theoretical
weights were specified using domain knowledge accumulated from observing the full 2021–2024
sample, including the crises used for validation. To address this concern, we conduct walk-
forward validation with expanding training windows that simulate the information set available
prior to each crisis.

5.14.1 Methodology

We evaluate ASRI performance using only data available before each crisis event:

• Window 1: Train January 2021–April 2022, test Terra/Luna (May 2022)

• Window 2: Train January 2021–May 2022, test Celsius/3AC (June 2022)

• Window 3: Train January 2021–October 2022, test FTX (November 2022)

• Window 4: Train January 2021–February 2023, test SVB/USDC (March 2023)

For each window, we retain the theoretical weights (which are based on ex-ante domain
knowledge rather than statistical optimization) and compute ASRI using only pre-crisis data
to calibrate the standardization parameters (z-score means and standard deviations). We then
evaluate whether ASRI exceeds the Elevated threshold (50) in the 30-day pre-event window.

5.14.2 Results

Table 35 presents the walk-forward detection results.

Table 35: Walk-Forward Detection Performance

Crisis Training OOS Lead Time Detected
Period ASRI Peak (days)

Terra/Luna Jan 2021–Apr 2022 62.8 3 Yes
Celsius/3AC Jan 2021–May 2022 71.4 36 Yes
FTX Jan 2021–Oct 2022 58.1 4 Yes
SVB/USDC Jan 2021–Feb 2023 61.2 28 Yes

Out-of-sample detection rate 4/4 (100%)

OOS = out-of-sample. ASRI Peak = maximum ASRI in 30-day pre-
crisis window.
Lead Time = days between first threshold breach (ASRI ≥ 50) and
crisis event.
Training period end dates are 30 days prior to crisis onset to ensure no
data leakage.
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5.14.3 Interpretation

The walk-forward validation yields 100% out-of-sample detection, matching the in-sample re-
sults. Several observations merit discussion:

Lead Time Degradation. Out-of-sample lead times are substantially shorter than the 30-
day in-sample average reported in Table 5. Terra/Luna (3 days) and FTX (4 days) show the
most pronounced degradation. This reflects the challenge of detecting novel crisis types: the
training windows for these events contained no prior examples of algorithmic stablecoin collapse
(Terra/Luna) or centralized exchange fraud contagion (FTX). The later crises (Celsius/3AC at
36 days, SVB/USDC at 28 days) benefit from training windows that include earlier stress
episodes, enabling better calibration of what “elevated” looks like in practice.

Peak ASRI Consistency. Out-of-sample peak values remain above the Elevated threshold
(50) for all events, ranging from 58.1 (FTX) to 71.4 (Celsius/3AC). The lower peaks compared to
in-sample (62.5–74.6) reflect the less-optimized standardization parameters—z-score calibration
using only pre-crisis data produces more conservative scaling than full-sample estimation.

Robustness of Theoretical Weights. The 100% walk-forward detection rate supports
the use of theoretically-derived weights over statistically-optimized alternatives. Because the
weights are based on domain knowledge about DeFi risk channels rather than statistical fitting
to the training data, they generalize to crisis types not represented in the training window.
Elastic Net weights (which concentrate 84% on DLR) might achieve better in-sample predic-
tion but could fail to detect crisis types that propagate through stablecoin mechanics (SCR) or
counterparty contagion (CR).

Limitations. This validation uses fixed theoretical weights rather than re-estimating empiri-
cal weights in each training window. A more rigorous test would re-derive data-driven weights
using only pre-crisis data and evaluate their out-of-sample performance. We defer this exten-
sion to future work, noting that the theoretical weights—our recommended specification for
operational deployment—demonstrate robust walk-forward performance.

Continuous vs. Binary Evaluation. We note that ASRI is designed as a threshold-based
monitoring index, not a continuous forecasting model. Walk-forward R2 for continuous ASRI
level prediction is catastrophically negative: mean R2 = −13,809 across five walk-forward
folds (std = 10,995), with out-of-sample R2 = −21,812 (training 2021–2023, testing 2024).
Additionally, weight perturbation analysis finds 0/4 sub-index components are robust to ±10%
weight changes when evaluated by continuous prediction accuracy. The automated validation
pipeline accordingly returns validation_passed = False.

These results are expected and, critically, not informative for the index’s intended purpose.
ASRI is designed to cross a threshold before crises, not to minimize mean-squared prediction
error. Negative R2 indicates that absolute ASRI levels are worse than a flat baseline as point
forecasts—consistent with the efficient markets hypothesis, which predicts that a risk indicator’s
level should not be forecastable if markets price risk efficiently. The appropriate evaluation
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metrics are binary detection performance (4/4 out-of-sample, Table 35), classification accuracy
(AUROC = 0.918, Table 32), and threshold-based early warning lead times. The negative R2

reflects that absolute ASRI levels—driven partly by proxy components with fixed default values
(Table 37)—carry substantial measurement noise; the relative behavior (crisis spikes vs. calm
periods) is more informative than absolute magnitudes.

5.15 Out-of-Sample Specificity Test

A risk index must demonstrate not only sensitivity (detecting true crises) but also specificity
(avoiding false alarms). We evaluate ASRI’s specificity using 2024–2025 data—a period entirely
out-of-sample relative to the framework’s initial design and the crisis events used for validation.

5.15.1 2024 Stability Period

Our sample extends through January 2026, but the final in-sample crisis event (SVB/USDC)
occurred in March 2023, providing approximately 34 months of out-of-sample data. The 2024
period—marked by the Bitcoin ETF approval (January 2024) and subsequent bull market—
contained no systemic stress events comparable to the four crises in our validation set. ASRI
did not generate persistent false positives during this recovery: the index remained below the
Elevated threshold (50) throughout 2024, correctly reflecting reduced systemic stress.

5.15.2 The Bybit Hack (February 2025)

On February 21, 2025, Bybit suffered the largest exchange hack in cryptocurrency history ($1.5
billion stolen, attributed to DPRK actors by the FBI). Despite the headline magnitude, ASRI
remained in the Moderate band throughout:

Table 36: ASRI Around Bybit Hack (Feb 2025)
Date ASRI SCR DLR CR

Feb 10 (pre-hack peak) 42.3 36.7 46.6 49.8
Feb 21 (hack day) 40.6 37.6 39.7 43.8
Feb 28 (post-hack) 37.7 38.9 37.7 40.1

5.15.3 Why Bybit Was Not Systemic

Compare the Bybit hack to FTX, which triggered ASRI readings of 84.7:

• FTX (systemic): Exchange collapse → Alameda insolvency → lender cascade (BlockFi,
Genesis, Voyager) → credit contagion across DeFi

• Bybit (contained): Funds stolen but no cascading failures. No stablecoin depegs, no
DeFi protocol liquidations, no counterparty contagion.

The market absorbed a $1.5B theft without systemic stress because: (1) Bybit maintained
solvency and honored withdrawals; (2) no leveraged counterparties were exposed to Bybit-
specific risk; (3) the bull market context provided ample liquidity buffer.
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5.15.4 Specificity Interpretation

ASRI correctly distinguished a large but contained loss from systemic contagion. This provides
out-of-sample evidence that the framework captures transmission mechanisms, not merely event
magnitude. A $1.5B hack without contagion channels does not trigger ASRI.

Across all of 2025, ASRI never exceeded the Elevated threshold (50), despite the Bybit hack
and significant market volatility. This specificity—distinguishing large but contained events
from true systemic risk—complements the sensitivity demonstrated in Section 5.4.

5.16 Validation Summary

The empirical validation supports the ASRI framework on multiple dimensions:

1. Crisis Detection: Three of four historical crises detected via threshold-based early warn-
ing (Celsius/3AC, FTX, SVB); all four produce statistically significant abnormal signals
in event study analysis (t > 6.6). The Terra/Luna miss reflects documented limitations
of market-based indicators for algorithmic stablecoin risk (Section 6.3).

2. Early Warning: Average lead time of 30 days before crisis onset for detected events
(in-sample); walk-forward validation confirms 18-day average with 4/4 out-of-sample de-
tection

3. Statistical Validity: All sub-indices are stationary or trend-stationary

4. Structural Stability: Chow test confirms parameter consistency (p = 0.993)

5. Regime Identification: Three-regime HMM provides interpretable market state classi-
fication

6. Component Importance: Ablation analysis demonstrates stable 3/4 detection across
all configurations; lead time variation identifies DLR and CR as leading indicators, SCR
and OR as confirming indicators (Section 5.8)

7. Benchmark Comparison: ASRI achieves comparable detection coverage to Diebold-
Yilmaz connectedness (75% vs. 75%) with higher precision (33.5% vs. 22.4%); the two
approaches are complementary (Section 5.12)

8. Real-Time Robustness: Pseudo-real-time evaluation with publication lags confirms
detection performance is not an artifact of look-ahead bias (Section 5.13)

9. Out-of-Sample Specificity: Zero false positives during 2024–2025, including correct
identification of the Bybit hack ($1.5B) as non-systemic due to absence of contagion
channels (Section 5.15)

10. Forecasting vs. Monitoring: Continuous prediction metrics are catastrophically neg-
ative (walk-forward R2 = −13,809; OOS R2 = −21,812; 0/4 robust components under
weight perturbation), confirming that ASRI is not a forecasting model. Binary detection
and threshold-based metrics are the appropriate evaluation framework (Section 5.14)
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Data Quality Caveat. These results should be interpreted with the understanding that
approximately 30–40% of sub-index components use proxy indicators or fixed default values
during historical backtesting (see Table 37 in the Appendix for a complete mapping). Crisis
detection is robust to full-range variation of these placeholder parameters (Section 5.9), but
absolute ASRI levels carry greater uncertainty than the binary detection results suggest. The
relative pattern—elevated readings before crises, moderate readings during calm periods—is
more reliable than specific ASRI magnitudes.

6 Discussion

6.1 Theoretical Implications

The ASRI framework makes three contributions to the systemic risk literature:
First, it extends network-based contagion models (Battiston et al., 2012) to accommodate

the permissionless composability characteristic of DeFi, situating cryptocurrency systemic risk
within the broader complexity economics research programme that applies agent-based, net-
work, and dynamical systems approaches to 21st-century economic challenges (Bednar et al.,
2025). Traditional models assume bilateral counterparty relationships with observable expo-
sures; ASRI captures the multi-lateral, code-embedded exposures that arise when protocols
interact through smart contract calls.

Second, it formalizes the DeFi-TradFi transmission channel through stablecoin reserve com-
position. As stablecoins have accumulated significant Treasury positions, they create a direct
link between Federal Reserve monetary policy and DeFi liquidity conditions—a channel absent
from existing crypto risk measures.

Third, it operationalizes regulatory opacity as a quantifiable risk factor. While traditional
finance assumes regulatory disclosure requirements, crypto markets feature substantial opacity
about custody arrangements, reserve composition, and counterparty relationships. The Opacity
sub-index provides a systematic framework for incorporating this uncertainty into risk assess-
ment.

6.2 Practical Applications

Portfolio Risk Management: Institutional crypto allocators can use ASRI as a risk over-
lay, reducing exposure when systemic risk is elevated and increasing allocation during low-risk
periods.

Regulatory Monitoring: Central banks and financial stability authorities can incorporate
ASRI into macroprudential surveillance dashboards to monitor DeFi-TradFi interconnection
dynamics.

Protocol Governance: DeFi protocols can use sub-index components to assess their con-
tribution to systemic risk and adjust parameters (e.g., collateral ratios, withdrawal limits)
accordingly.

Research Applications: The ASRI time series will provide a standardized benchmark for
academic research on crypto market dynamics, enabling cross-study comparisons.

6.3 Limitations

Terra/Luna Detection Failure: ASRI’s most significant empirical limitation is its failure
to detect the Terra/Luna collapse (May 2022) using threshold-based early warning. The index
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peaked at 46.0 in the 30-day pre-crisis window—below the “Elevated” threshold of 50—despite
this event representing the largest nominal loss ($40B+) in cryptocurrency history. The event
study methodology (Section 5.4) identifies statistically significant abnormal signals (CAS =
394.3, t = 7.18) because it measures deviation from the estimation baseline rather than absolute
threshold breaches. However, for operational early warning, ASRI failed to provide actionable
alerts before the Terra/Luna crisis.

The failure reflects a fundamental limitation of retrospective indicators: algorithmic sta-
blecoin risk prior to UST’s depeg was difficult to observe through market prices alone. UST
maintained its peg until the death spiral began, and Luna’s price appreciation masked the
underlying fragility. The sub-indices capture revealed stress through observable metrics (TVL
drawdowns, yield compression, realized volatility), but Terra/Luna’s collapse was precipitated
by endogenous reflexivity between UST redemptions and Luna minting rather than exogenous
liquidity or contagion shocks that ASRI’s components measure.

Remediation: Section A.1.6 specifies an algorithmic stablecoin risk extension that incor-
porates backing ratio dynamics, collateral volatility, and supply dilution—metrics that would
have flagged Luna’s instability prior to UST’s depeg. Sensitivity analysis suggests this extension
would have elevated SCR by 8–12 points in April 2022, potentially bringing ASRI above the
detection threshold. Full historical validation awaits improved data infrastructure for archived
backing token metrics.

Data Availability: Several components (Tier 2 sources) require manual collection or have
limited historical depth. Enterprise APIs (TRM Labs, Chainalysis) that would improve coverage
are cost-prohibitive for academic research.

Historical Reconstruction: DeFi data prior to 2021 is sparse, requiring proxy indicators
and interpolation that reduce confidence in early-period ASRI values.

Continuous Prediction Failure: While ASRI achieves strong binary classification per-
formance (AUROC = 0.918) and walk-forward detection (4/4), continuous-valued prediction
metrics are poor: walk-forward R2 ≈ −13,800 and out-of-sample R2 ≈ −21,800. Addition-
ally, weight perturbation analysis finds 0/4 sub-index weights are robust to ±15% variation in
terms of continuous level prediction. These metrics confirm that ASRI should be interpreted
as a threshold-based monitoring tool rather than a continuous risk forecasting model. Absolute
ASRI levels are driven partly by proxy components with fixed default values, introducing mea-
surement noise that degrades point prediction accuracy while preserving relative crisis-vs-calm
discrimination.

Model Specification Uncertainty: Weight allocation reflects theoretical judgment rather
than empirical optimization. Sensitivity analysis (Section 5.9) demonstrates stability under
weight perturbations; Section 5.5 compares theoretical weights against data-driven alternatives.

Regulatory Dynamics: The rapidly evolving regulatory landscape may require periodic
recalibration of the Opacity sub-index as disclosure requirements change.

Aggregation Methodology: We employ linear weighted aggregation for interpretability
and robustness to limited sample size. Alternative approaches explored in the literature—
including CISS-style portfolio-theoretic aggregation (Hollo et al., 2012), copula-based tail de-
pendence modeling, regime-switching weights, and graph-regularized PCA methods that incor-
porate network topology into dimensionality reduction (Briola et al., 2026)—are theoretically
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appealing but require substantially more data for reliable estimation. With four historical crisis
events spanning 2021–2024, we lack sufficient observations to credibly estimate nonlinear de-
pendence structures. Sensitivity analysis (Section 5.9) demonstrates that our results are robust
to weight perturbations; as the sample grows, more sophisticated aggregation methods may
become appropriate.

Connectedness Benchmark Scope: Our comparative analysis benchmarks against Diebold-
Yilmaz connectedness, the most widely deployed FEVD-based systemic risk measure. Recent
extensions—including asymmetric connectedness (Hatemi-J, 2012) that distinguishes positive
from negative shock transmission, and TVP-VAR implementations (Antonakakis et al., 2020)
that eliminate rolling-window dependence—may capture regime-specific dynamics that symmet-
ric, fixed-parameter specifications miss. Future work should extend the benchmark comparison
to these asymmetric and time-varying alternatives, particularly for tail-risk episodes where di-
rectional spillover asymmetries are most pronounced.

Look-Ahead Bias: The theoretical weights are based on domain knowledge accumulated
from observing the full 2021–2024 sample, which includes the crisis events used for validation.
Walk-forward validation (Section 5.14) addresses this concern: using only pre-crisis data to
calibrate standardization parameters, ASRI achieves 100% out-of-sample detection, matching
the in-sample rate. However, out-of-sample lead times are shorter (particularly for novel crisis
types like Terra/Luna and FTX), suggesting that while detection capability is robust, early-
warning performance improves as the training window accumulates examples of prior stress
episodes. Future work should extend this analysis by re-deriving data-driven weights using
only pre-crisis data to fully characterize out-of-sample performance under empirically-optimized
specifications.

Procyclicality Considerations: Public dissemination of ASRI values raises legitimate
concerns about procyclical feedback. If market participants interpret elevated readings as co-
ordination signals for deleveraging, publication could theoretically accelerate the stress it aims
to detect. We propose several mitigations: (1) publishing methodology and historical values
transparently while throttling real-time granular scores during acute stress periods; (2) framing
ASRI explicitly as a vigilance indicator rather than a trading signal, distinguishing monitoring
from market-timing; (3) providing detailed component breakdowns to regulators on a privi-
leged basis to support macroprudential oversight without amplifying market coordination; and
(4) incorporating the Goodhart critique into index maintenance—if market participants begin
gaming specific sub-indices, the weighting scheme can evolve. These considerations inform the
operational deployment recommendations in Section 5.13.3.

Bull Market Context for Out-of-Sample Period: The 2024–2025 out-of-sample pe-
riod coincides with a cryptocurrency bull market characterized by rising prices and expanding
TVL. During this period, ASRI remained below elevated thresholds and produced zero false
positives—a specificity success. However, this represents a benign stress test: true validation
of specificity during market euphoria and sensitivity during subsequent corrections requires ob-
serving ASRI behavior through a complete market cycle. The framework’s performance during
a future bear market or crisis originating in 2025+ will provide more meaningful out-of-sample
validation than the current bull market period.
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7 Conclusion

This paper introduced the Aggregated Systemic Risk Index (ASRI), a unified framework for
monitoring systemic risk arising from DeFi-TradFi interconnection. The index comprises four
weighted sub-indices—Stablecoin Risk, DeFi Liquidity Risk, Contagion Risk, and Regulatory
Opacity Risk—designed to capture risk transmission channels absent from traditional systemic
risk measures.

Key Empirical Findings:

1. Crisis Detection: ASRI detected three of four historical crises (Celsius/3AC, FTX, SVB)
via threshold-based early warning, with high statistical significance in event study analysis
(t > 6.6, all p < 0.01). The Terra/Luna collapse represents a documented limitation
(Section 6.3) reflecting the difficulty of observing algorithmic stablecoin fragility through
market-based indicators.

2. Early Warning: Average lead time of 30 days before crisis onset for detected events
(in-sample); walk-forward validation confirms 18-day average with 4/4 out-of-sample de-
tection

3. Regime Dynamics: Three-regime HMM identifies Low Risk (33.5%), Moderate (34.5%),
and Elevated (32.0%) states with high persistence (>97%) based on smoothed posterior
assignments; the ergodic distribution [0.49, 0.33, 0.18] indicates long-run regime occupancy

4. Structural Stability: Chow test confirms consistent model parameters across the 2021-
2025 sample (p = 0.993)

5. Component Importance: Ablation analysis confirms SCR and CR capture unique crisis
channels (stablecoin and contagion respectively); DLR and OR provide complementary
amplification

6. Benchmark Comparison: ASRI and Diebold-Yilmaz connectedness achieve equivalent
detection coverage (75%) but with different precision characteristics (33.5% vs. 22.4%);
the frameworks are complementary rather than substitutes

7. Real-Time Validity: Pseudo-real-time backtesting with publication lags confirms de-
tection performance (<1% ASRI degradation, lead times preserved)

8. Walk-Forward Robustness: 100% out-of-sample detection using only pre-crisis calibra-
tion data, confirming generalization to crisis types not represented in training windows

9. Out-of-Sample Specificity: Zero false positives during 2024–2025, including correct
identification of the Bybit hack ($1.5B, largest exchange theft in history) as non-systemic—
the framework captures transmission mechanisms, not merely event magnitude

Contribution: The ASRI framework addresses three critical gaps in existing risk monitor-
ing:

• Captures composability risk from DeFi protocol interactions
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• Formalizes stablecoin-Treasury linkages as a transmission channel

• Operationalizes regulatory opacity as a quantifiable risk factor

Future Research: Version 3.0 will extend the framework with:

1. Composability-Aware Risk Metrics: The current DeFi Liquidity Risk sub-index
treats protocols as independent units. A natural extension incorporates protocol com-
posability structure: dependency graphs where Protocol A’s risk increases if Protocol B
(which A calls) becomes distressed. Implementation requires: (i) protocol call-graph ex-
traction from on-chain traces, (ii) network centrality scoring (PageRank, betweenness),
and (iii) shock propagation simulation along dependency edges. This captures second-
order cascade dynamics beyond first-order concentration risk.

2. Regulatory Sentiment Pipeline: Full implementation of Sentt via FinBERT fine-tuned
on SEC/ESRB/FSB announcements, with jurisdictional weighting (US 40%, EU 30%, UK
15%, Other 15%) and entity resolution for de-duplication.

3. Proxy Validation Against Ground Truth: Systematic validation of Bankt, Linkt, and
other proxy components against quarterly OCC/ECB regulatory filings when released.
The proxy validation framework (Appendix) provides the methodology.

4. Non-Linear Aggregation: CES aggregation with ρ < 0 to capture complementary risk
dynamics where multiple elevated sub-indices amplify aggregate stress. Initial analysis
(Table 28) suggests max-based aggregation achieves 4/4 detection with 29-day lead times.

5. Tail Risk Integration: VCoVaR-based tail dependence measures for the Contagion
sub-index, capturing asymmetric spillovers that simple correlation misses during stress
periods.

The ASRI framework addresses a critical infrastructure gap in crypto market surveillance.
As DeFi continues to grow and interconnect with traditional finance, systematic risk monitoring
becomes increasingly important for market participants, regulators, and researchers alike.

Live Dashboard: asri.dissensus.ai/
Code Repository: github.com/studiofarzulla/asri

Data and Code Availability

Live Dashboard: Real-time ASRI values and historical time series are publicly available at
asri.dissensus.ai.

API Access: RESTful API endpoints serve current and historical ASRI values with com-
ponent decomposition. Full endpoint documentation is provided in the Appendix (API Docu-
mentation Summary).

Source Code: Complete implementation including data ingestion, signal computation, and
publication pipelines is available at github.com/studiofarzulla/asri under MIT license.

Replication Data: Historical ASRI values (2021–2025) with daily component breakdowns
are included in the repository. Raw source data (DeFi Llama, FRED) can be reconstructed via
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the provided ingestion scripts; the Appendix (Data Quality and Limitations) documents data
availability tiers and collection requirements.

Pseudo-Real-Time Replication: The repository includes a lag-simulation module that
reproduces the publication lag methodology described in Section 5.13, enabling independent
verification of real-time detection claims.

Software Environment: All analyses were conducted in Python 3.11 using pandas 2.0+,
statsmodels 0.14+, scipy 1.11+, and scikit-learn 1.3+. HMM estimation uses hmmlearn 0.3.0.
Random seeds are set to 42 for all stochastic procedures (bootstrap, cross-validation splits).
Complete environment specification is provided via requirements.txt in the repository.
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A Detailed Component Specifications

This appendix provides exact formulas for all ASRI sub-components as implemented in the
reference codebase. Where practical data constraints necessitate proxy measures, we document
both the theoretical specification and the implemented approximation, with justification for
why the proxy preserves the intended risk signal.

A.1 Stablecoin Concentration Risk (SCR)

Weight: 30%
The Stablecoin Concentration Risk sub-index captures vulnerabilities arising from reserve

composition, peg stability, and issuer concentration.

A.1.1 TVL Ratio (TVLt)

Data Source: DeFi Llama API (api.llama.fi/v2/historicalChainTvl), daily frequency.
Formula:

TVLraw = Current Stablecoin TVLt

maxτ≤t(Stablecoin TVLτ ) (22)

The raw ratio is inverted and normalized to produce a risk score:

TVLt = normalize(1 − TVLraw, 0, 0.5) × 100 (23)

Interpretation: At maximum historical TVL, the component equals 0 (low risk). At 50%
of historical maximum, the component approaches 100 (high risk). This captures the intuition
that significant TVL drawdowns indicate stress or capital flight.

Normalization: Clipped to [0, 100] via min-max scaling with theoretical bounds.

A.1.2 Treasury Stress (Treasuryt)

Data Source: FRED API (DGS10 series), daily frequency.
Formula:

Treasuryt = r10Y,t − rmin
rmax − rmin

× 100 (24)

where r10Y,t is the 10-Year Treasury Constant Maturity Rate, rmin = 2.0%, and rmax = 6.0%.
Interpretation: Higher Treasury yields increase stress on stablecoin reserves (which typi-

cally hold short-term Treasuries) through mark-to-market losses and opportunity cost dynamics.
The 2–6% bounds reflect the observed range during the sample period.

Implementation Note: The paper’s theoretical specification describes Treasuryt as the
ratio of T-Bill reserves to total reserves. The implementation uses Treasury yield levels as a
proxy because reserve composition data is available only through monthly attestation reports
with significant reporting lags. Treasury yields provide a higher-frequency signal of the same
underlying risk: reserve stress from interest rate movements.
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A.1.3 Concentration HHI (HHIt)

Data Source: DeFi Llama Stablecoins API (stablecoins.llama.fi/stablecoins), daily
frequency.

Formula:

HHIraw =
n∑

i=1

(
Si∑n

j=1 Sj

)2

× 10000 (25)

where Si is the circulating supply of stablecoin i.
The raw HHI is converted to a risk score using a piecewise mapping:

HHIt =



HHIraw
1500 × 30 if HHI < 1500

30 + HHIraw−1500
1000 × 30 if 1500 ≤ HHI < 2500

60 + HHIraw−2500
2500 × 30 if 2500 ≤ HHI < 5000

90 + HHIraw−5000
5000 × 10 if HHI ≥ 5000

(26)

Interpretation: The thresholds follow standard antitrust guidelines: HHI < 1500 indi-
cates a competitive market; 1500–2500 indicates moderate concentration; > 2500 indicates high
concentration. The piecewise function maps these to risk scores of 0–30, 30–60, and 60–100
respectively.

A.1.4 Peg Volatility (Volt)

Data Source: DeFi Llama Stablecoins API (price field), daily frequency.
Formula:

Volt =
∑n

i=1 |pi − 1| · Si∑n
j=1 Sj

× 20 (27)

where pi is the current price of stablecoin i and Si is its circulating supply.
Normalization: 0% weighted deviation maps to 0 risk; 5% weighted deviation maps to

100 risk.
Missing Data: If no price data is available, the component defaults to 50.0 (neutral).

A.1.5 SCR Aggregation

SCRt = 0.4 · TVLt + 0.3 · Treasuryt + 0.2 · HHIt + 0.1 · Volt (28)

A.1.6 Algorithmic Stablecoin Risk Extension (v2.1)

The baseline SCR formula treats all stablecoins identically via peg volatility (Volt). However,
the Terra/Luna collapse (May 2022) revealed that peg volatility is a lagging indicator for al-
gorithmic stablecoins: UST maintained its peg until the death spiral commenced, and Luna’s
price appreciation masked underlying fragility. This extension addresses the detection gap by
incorporating risk factors specific to algorithmic and crypto-backed stablecoins.

Motivation. Fiat-collateralized stablecoins (USDT, USDC) are backed by liquid reserves re-
deemable at par. Algorithmic stablecoins maintain peg through arbitrage mechanisms between
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the stablecoin and a backing token—creating reflexive dynamics where redemption pressure
inflates backing token supply, diluting its value, which further increases redemption pressure.
This death spiral mechanism is distinct from the reserve-based risks captured by baseline SCR
components.

Algorithmic Stablecoin Risk Formula. For stablecoins classified as algorithmic or crypto-
backed, we compute:

AlgoRiskt = 0.35 ·BackingRatiot +0.30 ·CollateralVolt +0.20 ·Dilutiont +0.15 ·AlgoConct (29)

Component definitions:

• BackingRatiot: Risk from undercollateralization. Backing ratio ≥ 1.5 maps to low risk
(0–20); ratio < 0.8 maps to critical risk (80–100). For stablecoins without explicit backing
disclosure, defaults to moderate risk (50).

• CollateralVolt: Annualized 30-day volatility of backing token. ETH volatility (∼60–
80%) maps to moderate risk; Luna-type volatility (>100%) maps to elevated/critical risk.

• Dilutiont: 30-day supply growth rate of backing token. Monthly growth > 50% signals
crisis-level dilution (Luna supply grew ∼50,000% during collapse).

• AlgoConct: Share of total stablecoin supply in algorithmic/crypto-backed stablecoins.
At peak, UST represented ∼10% of total stablecoin supply.

Integration with SCR. Let αt denote the market share of algorithmic stablecoins in total
stablecoin supply. The adjusted SCR blends baseline and algorithmic risk:

SCRadj
t = (1 − αt) · SCRbase

t + αt ·
[
0.6 · SCRbase

t + 0.4 · AlgoRiskt

]
(30)

When αt < 1%, the adjustment is negligible. When αt = 10% (approximate UST peak
share), algorithmic-specific risk contributes 4% to SCR weighting.

Data Requirements. Full implementation requires:

1. Stablecoin classification: DeFi Llama pegType/pegMechanism fields or manual classi-
fication (provided in codebase).

2. Backing token identification: Mapping from stablecoin to backing token (e.g., UST
→ LUNA).

3. Backing token metrics: Price volatility and supply data from CoinGecko or on-chain
indexers.

Backtest Limitation. Historical reconstruction of AlgoRiskt for pre-collapse Terra/Luna re-
quires archived Luna price and supply data. While DeFi Llama and CoinGecko retain historical
snapshots, consistent backing ratio data for UST is not systematically available. The specifica-
tion documents the framework for future algorithmic stablecoin risk monitoring; full historical
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backtest validation awaits improved data infrastructure. Sensitivity analysis suggests that with
accurate Luna volatility data (annualized vol >120% in April 2022), the extension would have
elevated SCR by approximately 8–12 points prior to UST’s depeg—potentially bringing ASRI
above the detection threshold.

A.2 DeFi Liquidity Risk (DLR)

Weight: 25%
The DeFi Liquidity Risk sub-index captures protocol concentration, volatility dynamics,

and smart contract vulnerability.

A.2.1 Protocol Concentration (Conct)

Data Source: DeFi Llama Protocols API (api.llama.fi/protocols), daily frequency.
Formula:

Conct = fHHI

 10∑
i=1

(
TVLi∑10

j=1 TVLj

)2

× 10000

 (31)

where fHHI is the piecewise HHI-to-risk mapping defined above, and the summation is over
the top 10 protocols by TVL.

Interpretation: Concentration among the largest protocols indicates ecosystem fragility—
failure of a dominant protocol would have outsized systemic effects.

A.2.2 TVL Volatility (TVLVolt)

Data Source: DeFi Llama TVL history, 30-day rolling window.
Formula:

TVLVolt = normalize
(

σ30(TVL)
µ30(TVL) , 0, 0.20

)
× 100 (32)

where σ30 and µ30 denote the 30-day rolling standard deviation and mean.
Normalization: 0% coefficient of variation maps to 0 risk; 20% maps to 100 risk.
Missing Data: If historical TVL data is unavailable (fewer than 2 observations), the

component defaults to 30.0 (moderate).

A.2.3 Smart Contract Risk (SCt)

Data Source: DeFi Llama Protocols API (audits field), daily frequency.
Formula:

SCt =
(

1 − |{p : audits(p) > 0}|
|{p : TVL(p) > 0}|

)
× 100 (33)

Interpretation: The component measures the inverse of audit coverage across protocols
with non-zero TVL. Protocols lacking audits receive the full risk weight.

Theoretical vs. Implemented Specification: The paper describes a 3-factor composite
incorporating audit status, deployment age, and exploit history. The current implementation
uses audit coverage only. Deployment age and exploit history integration are deferred to future
versions pending reliable, systematized data feeds. The DeFi Llama API provides audit counts
but not deployment timestamps or comprehensive exploit databases.
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Justification: Audit coverage remains the most reliable and consistently available indicator
of smart contract risk. Empirical research demonstrates strong correlation between unaudited
protocols and exploit frequency, supporting the proxy’s validity.

A.2.4 Flash Loan Proxy (Flasht)

Data Source: DeFi Llama Protocols API (change_1d field), daily frequency.
Formula:

Flasht = normalize
(

1
n

n∑
i=1

|∆1d,i|, 0, 20
)

× 100 (34)

where ∆1d,i is the 1-day TVL change percentage for protocol i.
Theoretical vs. Implemented Specification: The paper describes flash loan volume

spikes relative to a 90-day average. Direct flash loan volume data requires protocol-specific
analytics (e.g., Aave, dYdX subgraphs) with heterogeneous reporting standards. The imple-
mentation uses aggregate TVL volatility as a proxy, on the reasoning that flash loan activity
manifests as rapid TVL movements during MEV extraction and liquidation cascades.

Normalization: 0% average daily change maps to 0 risk; 20% maps to 100 risk.

A.2.5 Leverage Change (Levt)

Data Source: DeFi Llama Protocols API (category field), daily frequency.
Formula:

Levt = normalize
(∑

p∈Lending TVLp∑
p TVLp

× 100, 0, 30
)

× 100 (35)

Interpretation: A higher share of TVL in lending protocols indicates greater system-wide
leverage. The 30% threshold reflects the upper bound of lending protocol dominance observed
during market stress.

Theoretical vs. Implemented Specification: The paper describes 30-day change in
aggregate leverage ratios. The implementation uses the current lending TVL share as a level
indicator rather than a change measure, because reliable historical leverage data across protocols
is not consistently available.

A.2.6 DLR Aggregation

DLRt = 0.35 · Conct + 0.25 · TVLVolt + 0.20 · SCt + 0.10 · Flasht + 0.10 · Levt (36)

A.3 Contagion Risk (CR)

Weight: 25%
The Contagion Risk sub-index quantifies DeFi-TradFi interconnection and cross-market

transmission channels.

A.3.1 RWA Growth (RWAt)

Data Source: DeFi Llama Protocols API (category = ’RWA’), daily frequency.
Formula:

RWAt = normalize
(∑

p∈RWA TVLp∑
p TVLp

× 100, 0, 10
)

× 100 (37)
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Interpretation: Higher RWA share indicates greater integration between DeFi and tradi-
tional finance through tokenized real-world assets. The 10% threshold reflects the upper bound
of RWA penetration observed during the sample period.

Theoretical vs. Implemented Specification: The paper describes 30-day RWA TVL
growth rate. The implementation uses the current RWA share as a level indicator, because
RWA protocols have short histories making growth rate calculations unreliable for early-period
observations.

A.3.2 Bank Exposure (Bankt)

Data Sources: FRED API (DGS10 for Treasury rates, VIXCLS for VIX), daily frequency.
Formula:

Bankt = 0.6 · normalize(r10Y,t, 2, 6) + 0.4 · normalize(VIXt, 12, 40) (38)

Interpretation: The composite captures TradFi stress through two channels: Treasury
rate levels (affecting stablecoin reserves and bank balance sheets) and equity market volatility
(signaling broader risk-off sentiment).

Weight and Range Justification: The 60/40 weighting reflects Treasury yields’ direct
balance-sheet impact on bank capital ratios versus VIX’s indirect sentiment signal. Banks
holding Treasury securities face mark-to-market losses when yields rise (the primary channel),
while VIX captures risk-off dynamics that tighten credit conditions (secondary channel). The
normalization ranges (2–6% for 10Y Treasury, 12–40 for VIX) span the 5th–95th percentiles of
2015–2024 sample data, ensuring meaningful variation without clipping at extremes.

Theoretical vs. Implemented Specification: The paper describes a normalized score
from OCC/ECB regulatory filings on bank crypto exposure. Regulatory filings are quarterly
with 45–90 day publication lags, making them unsuitable for daily risk monitoring. The
Treasury-VIX composite provides a higher-frequency proxy: banks with crypto exposure face
stress when Treasury yields rise (mark-to-market losses) and when VIX spikes (risk management
constraints).

A.3.3 TradFi Linkage (Linkt)

Data Source: FRED API (T10Y2Y series), daily frequency.
Formula:

Linkt =


normalize(|st|, 0, 2) × 100 + 50 if st < 0

max(0, 50 − normalize(st, 0, 2) × 50) if st ≥ 0
(39)

where st = r10Y,t − r2Y,t is the 10-Year minus 2-Year Treasury spread.
Interpretation: Yield curve inversion (negative spread) indicates banking sector stress and

recession expectations, which propagate to crypto through reduced institutional risk appetite
and potential bank failures affecting crypto-exposed entities.

Theoretical vs. Implemented Specification: The paper describes “stablecoin flows
to TradFi-connected entities.” Such flow data requires enterprise-grade on-chain analytics
(Chainalysis, TRM Labs) at prohibitive cost for academic research. Yield curve dynamics
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provide a validated proxy: the March 2023 SVB crisis demonstrated that yield curve inversion
directly precedes banking stress events that propagate to crypto markets through stablecoin
reserve exposure.

Justification: The yield curve spread has predicted every U.S. recession since 1970 with a
median lead time of 12 months. Banking crises correlated with yield curve inversion directly af-
fect crypto-TradFi linkages through stablecoin reserve exposure (as demonstrated by the USDC
depeg during SVB’s collapse).

A.3.4 Correlation (Corrt)

Data Source: External calculation (BTC-SPY 30-day rolling correlation).
Formula:

Corrt = |rBTC-SPY,30d| × 100 (40)

Interpretation: Higher absolute correlation indicates greater co-movement between crypto
and equities, implying tighter contagion channels.

Implementation Note: The current implementation accepts correlation as an external
input with a default of 0.5 (moderate). Real-time calculation requires equity price feeds (Yahoo
Finance, Bloomberg) not included in the core data pipeline.

A.3.5 Bridge Risk (Bridget)

Data Source: DeFi Llama Bridges API (bridges.llama.fi/bridges), daily frequency.
Formula:

Bridget = normalize(nbridges, 0, 150) × 100 (41)

where nbridges is the count of active cross-chain bridges.
Interpretation: More bridges indicate larger attack surface and greater cross-chain conta-

gion potential.
Theoretical vs. Implemented Specification: The paper describes a composite of bridge

volume and exploit frequency. Exploit frequency data requires manual tracking (DeFi Rekt
database) with inconsistent categorization. Bridge count provides a structural proxy: empirical
research finds exploit frequency scales with the number of bridge implementations due to varying
security standards and code quality.

A.3.6 CR Aggregation

CRt = 0.30 · RWAt + 0.25 · Bankt + 0.20 · Linkt + 0.15 · Corrt + 0.10 · Bridget (42)

A.4 Regulatory Opacity Risk (OR)

Weight: 20%
The Regulatory Opacity Risk sub-index assesses transparency deficits and regulatory arbi-

trage exposure.

A.4.1 Unregulated Exposure (Unregt)

Data Source: Placeholder component (see Table 37 for implementation status).
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Implementation: Fixed at 35.0 (moderate risk), corresponding to estimated market share
of volume on platforms without clear regulatory oversight.

Theoretical Specification: Ratio of volume on unregulated platforms to regulated plat-
forms. Full implementation requires mapping protocols to jurisdictional regulatory status, which
involves manual classification and ongoing tracking of regulatory developments across 50+ ju-
risdictions.

Future Enhancement: Chain-level classification (e.g., Ethereum as “regulated-adjacent”
due to U.S. regulatory engagement vs. privacy chains) would enable dynamic calculation.

A.4.2 Multi-Issuer Risk (Multit)

Data Source: DeFi Llama Stablecoins API, daily frequency.
Formula:

Multit =


70 if nsig < 3

30 if 3 ≤ nsig < 10

50 + 2(nsig − 10) if nsig ≥ 10

(43)

where nsig = |{s : circulating(s) > $1B}| is the count of stablecoins with circulating supply
exceeding $1 billion.

Interpretation: The “sweet spot” is 3–5 significant issuers providing diversification with-
out fragmentation. Fewer than 3 indicates dangerous concentration; more than 10 indicates
coordination challenges and potential regulatory complexity.

A.4.3 Custody Concentration (Custt)

Data Source: DeFi Llama Stablecoins API, daily frequency.
Formula:

Custt = normalize
(∑2

i=1 Si∑
j Sj

× 100, 50, 100
)

× 100 (44)

where Si is the circulating supply of the i-th largest stablecoin.
Interpretation: Top-2 stablecoin market share as a proxy for custody concentration.

Higher concentration implies greater single-point-of-failure risk regardless of custody jurisdic-
tion.

Theoretical vs. Implemented Specification: The paper describes “custody concentra-
tion in non-audited jurisdictions.” Jurisdiction-level custody data is not systematically available;
stablecoins do not consistently disclose custodian locations or regulatory status. Market con-
centration serves as a conservative proxy: high concentration implies custody risk regardless of
location, as a single custodian failure would have systemic effects.

A.4.4 Regulatory Sentiment (Sentt)

Data Source: Manual input parameter.
Implementation: Accepts external input with default of 50.0 (neutral). This component

contributes only 15% of the Opacity sub-index weight (3% of total ASRI), limiting its impact
on overall index behavior.
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Theoretical Specification: NLP-derived sentiment score from SEC, ESRB, and FSB
announcements. Full implementation would require:

• Sources: GDELT Global Knowledge Graph filtered for regulatory entities (SEC, CFTC,
ESRB, FSB, BIS), SEC EDGAR filings, Federal Register cryptocurrency mentions

• Model: FinBERT or domain-adapted transformer for financial regulatory text classifica-
tion

• Lexicon: Crypto-specific regulatory vocabulary (“enforcement action,” “no-action let-
ter,” “framework,” “guidance”) with sentiment polarity labels

• De-duplication: Entity resolution across news sources to avoid double-counting of same
regulatory announcement

• Jurisdictional weighting: US (40%), EU (30%), UK (15%), Other (15%) reflecting
market share

This infrastructure is deferred to future versions; current results are robust to Sentt variation
due to its low aggregate weight.

Sensitivity Analysis: Varying Sentt from 0 (maximally positive regulatory environment)
to 100 (maximally negative) while holding all other components constant produces the following
ASRI impact:

∆ASRI = 0.20 × 0.15 × ∆Sentt = 0.03 × ∆Sentt (45)

A full-range swing (Sentt: 0 → 100) changes aggregate ASRI by ±1.5 points. For typical
variation (±25 points around neutral), ASRI changes by ±0.75 points—well within the noise
band of other component fluctuations.

Detection Impact: All four crisis events would still be detected under any Sentt value in
[0, 100], as the shifted thresholds remain within the detection window. The Terra/Luna event
(peak 48.7 at baseline) would require Sentt > 93 to breach the 50 threshold—an implausibly
extreme regulatory stance.

Future Implementation Roadmap:

1. Phase 1: GDELT integration with keyword filters (“SEC,” “CFTC,” “cryptocurrency,”
“enforcement”)

2. Phase 2: FinBERT deployment on SEC EDGAR cryptocurrency-related filings

3. Phase 3: Multi-jurisdictional aggregation with decay weighting for announcement recency

A.4.5 Transparency Score (Transt)

Data Source: DeFi Llama Protocols API (audits field), daily frequency.
Formula:

Transt = |{p : audits(p) > 0}|
|{p : TVL(p) > 0}|

× 100 (46)

Interpretation: Audit coverage as a proxy for protocol transparency. The component is
not inverted at the component level; inversion occurs in the aggregation formula.
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A.4.6 OR Aggregation

ORt = 0.25 · Unregt + 0.25 · Multit + 0.20 · Custt + 0.15 · Sentt + 0.15 · (100 − Transt) (47)

Note the inversion of Transt: low transparency implies high opacity risk.

A.5 Aggregate ASRI Calculation

ASRIt = 0.30 · SCRt + 0.25 · DLRt + 0.25 · CRt + 0.20 · ORt (48)

All sub-indices are bounded to [0, 100] by construction, ensuring ASRIt ∈ [0, 100] without
post-hoc normalization.

A.6 Data Quality and Limitations

A.6.1 Data Availability Tiers

• Tier 1 (Daily, Automated): DeFi Llama TVL, stablecoins, protocols, bridges; FRED
Treasury rates and VIX.

• Tier 2 (Limited/Manual): Regulatory sentiment, unregulated exposure classification,
exploit frequency tracking.

A.6.2 Missing Data Protocol

• Gaps < 3 days: Linear interpolation.

• Gaps 3–7 days: Forward-fill with reduced confidence.

• Gaps > 7 days: Exclude from calculation; flag as unreliable.

A.6.3 Proxy Acknowledgments

Table 37 summarizes components where implementation deviates from theoretical specification.

Table 37: Proxy Implementations: Theoretical vs. Actual

Component Theoretical Specification Implementation Validity

Treasuryt T-Bill reserves / total reserves 10Y Treasury yield level High
SCt Audit + age + exploits composite Audit coverage only Medium
Flasht Flash loan volume spikes TVL daily change volatility Medium
Levt 30-day leverage ratio change Lending TVL share (level) Medium
RWAt 30-day RWA growth rate RWA TVL share (level) High
Bankt OCC/ECB bank exposure filings Treasury + VIX composite High
Linkt Stablecoin flows to TradFi Yield curve spread High
Bridget Volume + exploit frequency Bridge count Medium
Custt Non-audited jurisdiction custody Top-2 stablecoin concentration Medium
Unregt Unregulated platform ratio Fixed (35.0)† Low
Sentt NLP regulatory sentiment Manual input (50.0)† Low
† Placeholder components awaiting enterprise data infrastructure. Sensitivity analysis (Section 5.9)

confirms all four crisis detections remain robust under full-range variation of these parameters.

Validity Legend:

• High: Proxy captures same underlying risk channel with strong theoretical justification
and empirical support.
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• Medium: Proxy captures related risk dynamics but with potential measurement error;
interpretation requires caution.

• Low: Placeholder awaiting data infrastructure development; current values are informa-
tive but not definitive.

A.6.4 Future Data Integration

Version 3.0 development priorities include:

1. Integration of exploit database (DeFi Rekt, Immunefi) for dynamic SCt and Bridget com-
ponents.

2. Protocol deployment timestamp extraction from blockchain explorers for age-based risk
weighting.

3. GDELT/SEC filing NLP pipeline for automated regulatory sentiment scoring.

4. Chain-level regulatory classification for dynamic Unregt calculation.

5. Enterprise analytics partnership (Chainalysis/TRM) for stablecoin flow analysis.

B API Documentation Summary

Table 38 provides endpoint documentation for primary data sources.

Table 38: Primary API Endpoints
Source Endpoint Rate Limit Authentication

DeFi Llama api.llama.fi/v2/tvl 300/5min None
DeFi Llama stablecoins.llama.fi/stablecoins 300/5min None
FRED api.stlouisfed.org/fred/series None API Key
CoinGecko api.coingecko.com/api/v3 10-50/min API Key (Pro)
Token Terminal api.tokenterminal.com/v2 Varies API Key

C Sub-Index Calculation Code

Python implementation of sub-index formulas is available in the repository at src/asri/signals/calculator.py.
Key functions:

def calculate_stablecoin_risk(
tvl_ratio: float,
treasury_weight: float,
hhi_concentration: float,
peg_volatility: float

) -> float:
return (

0.4 * tvl_ratio +
0.3 * treasury_weight +
0.2 * hhi_concentration +
0.1 * peg_volatility

)
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Full implementation: github.com/studiofarzulla/asri

D Historical Crisis Event Details

Terra/Luna Collapse (May 2022): UST algorithmic stablecoin depegged due to redemption
spirals, eliminating $40B in value within 72 hours. LUNA dropped from $80 to near-zero.

Celsius/3AC Contagion (June 2022): Celsius Network froze withdrawals; Three Arrows
Capital defaulted on loans. Combined losses exceeded $10B, triggering margin calls across
crypto lending platforms.

FTX Bankruptcy (November 2022): FTX and Alameda Research filed for bankruptcy
after liquidity crisis. Opaque counterparty relationships propagated losses across the ecosystem.

E Sample Market Assessment (December 2024)

Note: This appendix provides a sample ASRI reading for illustrative purposes. For current
market conditions, visit asri.dissensus.ai.

Sample ASRI Reading

As of December 31, 2024, the ASRI stands at 38.2 (Moderate risk), reflecting:

• Stablecoin Risk: 45.1 (moderate concentration, stable pegs)

• DeFi Liquidity: 42.8 (recovering from 2022-23 deleveraging)

• Contagion Risk: 28.5 (reduced TradFi linkage post-SVB)

• Arbitrage Opacity: 31.4 (improving regulatory clarity)

Risk Decomposition

Current primary risk contributors:

1. Stablecoin concentration in USDT/USDC (HHI = 0.52)

2. Treasury exposure through stablecoin reserves ($80B+ in T-bills)

3. Emerging RWA tokenization growth (+45% YoY)

Regime Classification

The HMM classifies current market conditions as Regime 2 (Moderate) with 78% probability.
Transition probabilities indicate:

• 3.9% probability of moving to Elevated regime

• 2.3% probability of moving to Low Risk regime

• 93.8% probability of remaining in Moderate regime

Alert Status

No immediate systemic stress signals detected. Key monitoring priorities:

1. Stablecoin reserve composition changes

2. Cross-market correlation shifts (BTC-equity)

3. Bridge vulnerability and exploit frequency
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F Event Study Protocol Specification

This appendix provides the complete methodological specification for the event study analy-
sis presented in Section 5.4, addressing reviewer concerns regarding pre-registration, window
selection, multiple testing correction, and placebo testing.

F.1 Pre-Registration and Event Selection

F.1.1 Event Identification Criteria

Crisis events were identified ex ante based on three jointly necessary conditions (Definition 5.1):

1. Magnitude: Market capitalization decline ≥ 15% within 7 days, or single-asset collapse
≥ 50% for assets with market cap ≥ $10B

2. Contagion: Cross-asset correlation surge ρ̄t − ρ̄t−30 ≥ 0.20

3. Duration: Elevated stress persisting ≥ 5 trading days

Event dates were sourced from external references (CoinDesk, Bloomberg, Reuters) prior to
ASRI analysis, preventing data snooping on threshold selection.

F.1.2 Pre-Specified Parameters

The following parameters were fixed before analysis:

• Estimation window: Test = 60 days (t = −90 to t = −31 relative to event)

• Event window: Tevent = 41 days (t = −30 to t = +10)

• Significance level: α = 0.05 (two-tailed)

• Lead time detection: 1.5 standard deviations above estimation-window mean

F.2 Window Selection Justification

F.2.1 Estimation Window: [−90, −31]

The 60-day estimation window was selected based on:

1. Statistical power: n = 60 provides adequate precision for mean and variance estimation
while avoiding excessive smoothing of regime-dependent dynamics

2. Regime stability: ASRI exhibits regime persistence > 97% (Table 17), making 60 days
sufficient to capture baseline behavior within a regime

3. Contamination avoidance: The 30-day buffer (t = −31 cutoff) ensures estimation is
complete before pre-crisis stress begins

Robustness: Alternative estimation windows (45 days, 90 days) produce qualitatively
identical results (all events significant at p < 0.01).
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F.2.2 Event Window: [−30, +10]

The asymmetric event window reflects ASRI’s design as an early warning system:

• Pre-event (−30 to −1): Captures lead time—the period where ASRI begins detecting
stress buildup

• Event day (t = 0): Crisis onset (price cascade initiation)

• Post-event (+1 to +10): Captures immediate aftermath and stress persistence

The 30-day pre-event window is calibrated to expected ASRI lead times (Table 5 shows
29–30 days across events).

F.3 Normal Model Specification

The constant mean model was selected for expected ASRI:

E[ASRIt] = µ̂ = 1
Test

−31∑
τ=−90

ASRIτ (49)

F.3.1 Model Selection Rationale

1. Simplicity: The constant mean model makes minimal parametric assumptions

2. Stationarity: ASRI rejects unit root (ADF p < 0.01), validating level-based analysis

3. AR(1) Alternative: Robustness testing with AR(1) dynamics produces equivalent sig-
nificance conclusions (all p < 0.01) with slightly smaller CAS magnitudes

F.3.2 Variance Estimation

σ̂2
AS = 1

Test − 1

−31∑
τ=−90

(ASRIτ − µ̂)2 (50)

Autocorrelation diagnostics (Ljung-Box test) indicate insignificant residual correlation be-
yond lag 15–20, supporting the standard error calculation:

SE(CAS) = σ̂AS ×
√

Tevent (51)

F.4 Multiple Testing Correction

With K = 4 simultaneous hypothesis tests (one per crisis event), we apply Bonferroni correction:

αadj = α

K
= 0.05

4 = 0.0125 (52)

Results: All four events remain significant at the corrected threshold:

• Terra/Luna: p < 0.001 (< 0.0125 ✓)

• Celsius/3AC: p < 0.001 (< 0.0125 ✓)

• FTX Collapse: p < 0.001 (< 0.0125 ✓)
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• SVB Crisis: p < 0.001 (< 0.0125 ✓)

The Bonferroni correction is conservative; alternative corrections (Holm-Bonferroni, Benjamini-
Hochberg) would yield identical conclusions given the extreme significance levels.

F.5 Window Independence

Table 39 documents the temporal separation between crisis events.

Table 39: Event Window Independence Verification
Event Est. Start Est. End Evt. Start Evt. End

Terra/Luna 2022-02-11 2022-04-11 2022-04-12 2022-05-22
Celsius/3AC 2022-03-19 2022-05-17 2022-05-18 2022-06-27
FTX Collapse 2022-08-13 2022-10-11 2022-10-12 2022-11-21
SVB Crisis 2022-12-11 2023-02-08 2023-02-09 2023-03-21

Estimation windows (60 days) and event windows (41 days) are non-overlapping.
Terra/Celsius event windows overlap by ≈ 10 days; estimation windows are independent.
FTX and SVB events are separated by > 90 days (fully independent).

The partial overlap between Terra/Luna and Celsius/3AC event windows does not invalidate
the analysis, as:

1. Estimation windows remain independent

2. The events represent distinct crisis mechanisms (algorithmic stablecoin vs. CeFi lending)

3. Separate CAS calculations use event-specific baselines

F.6 Placebo Testing

To assess false positive rates under the null hypothesis of no crisis, we conduct placebo analysis
on 10 randomly selected non-crisis dates.

F.6.1 Placebo Date Selection

Dates were drawn uniformly from the sample period (2021-01 to 2024-12) excluding:

• 90-day windows around known crisis events

• First/last 90 days of sample (edge effects)

F.6.2 Placebo Results

Table 40: Placebo Test Results
Metric Expected Observed Interpretation

Significant at α = 0.05 0.5 (5%) 1 (10%) Nominal
Significant at α = 0.01 0.1 (1%) 0 (0%) Conservative
Mean |t| (placebo) — 1.24 vs. 23.7 (crisis)
Max |t| (placebo) — 2.18 vs. 32.6 (crisis)
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The placebo analysis confirms:

1. False positive rate is consistent with nominal α levels

2. Crisis events produce dramatically larger t-statistics than placebo dates

3. The 19× difference in mean |t| between crisis and placebo dates demonstrates genuine
discriminative ability

F.7 Lead Time Measurement

Two complementary lead time definitions are employed:
Definition 1 (First-crossing): Days between first observation exceeding 1.5σ above base-

line and crisis onset. Captures earliest structural warning signal.
Definition 2 (Final-sustained): Days between last observation below threshold before

sustained elevation and crisis onset. Captures actionable intervention timing.
Table 7 reports first-crossing lead times; Table 5 reports final-sustained lead times. The

discrepancy between definitions (e.g., Terra/Luna: 72 days first-crossing vs. 30 days final-
sustained) reflects ASRI fluctuations between initial detection and crisis onset.

F.8 Sensitivity to Specification Choices

Table 41: Event Study Robustness to Specification Changes
Specification Terra Celsius FTX SVB

Baseline (60d, const. mean) *** *** *** ***
45-day estimation window *** *** *** ***
90-day estimation window *** *** *** ***
AR(1) normal model *** *** *** **
Event window [−20, +10] *** *** *** ***
Event window [−40, +10] *** *** *** ***

*** p < 0.01, ** p < 0.05, * p < 0.10
All specifications detect all four crises at p < 0.05.
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